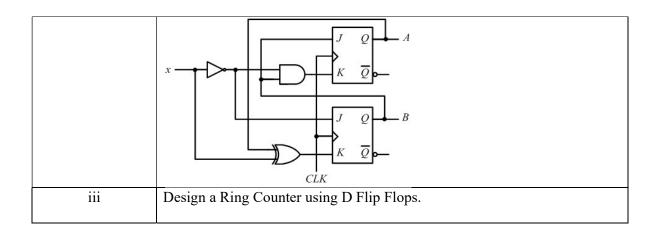
University of Mumbai

Examinations Commencing from 22nd November 2021 to 5th January 2022

Program: Electronics and Computer Science Curriculum Scheme: Rev2019 Examination: SE Semester III

Course Code: ECC303 and Course Name: Digital Electronics


Time: 2hour 30 minutes Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	What is the reflected binary code of (100101) ₂ .
Option A:	111000
Option B:	101010
Option C:	101111
Option C:	110111
Option D.	110111
2.	How many two-input AND and OR gates are required to realize $Y = AB + CD + E$?
Option A:	2,2
Option B:	2,3
Option C:	3,2
Option D:	3,3
3.	If a half adder has A and B as the inputs, then the product is given by
Option A:	A EX-NOR B
Option B:	A OR B
Option C:	A AND B
Option D:	A XOR B
4.	What are the number of select lines required for a 16:1 multiplexer?
Option A:	1
Option B:	2
Option C:	3
Option D:	4
5.	A demultiplexer convertsinputs to multiple outputs.
Option A:	
Option B:	
Option C:	2n
Option D:	2 ⁿ
6.	A BCD counter can be implemented with how many number of flip flops?
Option A:	10
Option B:	5
Option C:	4
Option D:	8

Option A: present state Option B: past state Option C: Present state and input Option D: external inputs 8. The internal structure of MSI counter IC 7493 consist of Option A: Mod 2 and Mod 6 counter Option B: Mod 2 and Mod 8 counter Option C: Mod 5 and Mod 8 counter Option D: Mod 2 and Mod 5 counter 9. What does CPLD stand for Option A: Complex Programmable Logic Device Option B: Combinational Programmable Logic Device Option C: Combined Preset Logic Device Option D: Complex Preset Logic Device 10. In verilog HDL the operator <= is used for Option A: Blocking assignment		
Option B: past state Option C: Present state and input Option D: external inputs 8. The internal structure of MSI counter IC 7493 consist of Option A: Mod 2 and Mod 6 counter Option B: Mod 2 and Mod 8 counter Option C: Mod 5 and Mod 8 counter Option D: Mod 2 and Mod 5 counter 9. What does CPLD stand for Option A: Complex Programmable Logic Device Option B: Combinational Programmable Logic Device Option C: Combined Preset Logic Device Option D: Complex Preset Logic Device 10. In verilog HDL the operator <= is used for Option A: Blocking assignment	7.	In a sequential circuit designed as a mealy machine, the output depends on
Option C: Present state and input Option D: external inputs 8. The internal structure of MSI counter IC 7493 consist of Option A: Mod 2 and Mod 6 counter Option B: Mod 2 and Mod 8 counter Option C: Mod 5 and Mod 8 counter Option D: Mod 2 and Mod 5 counter 9. What does CPLD stand for Option A: Complex Programmable Logic Device Option B: Combinational Programmable Logic Device Option C: Combined Preset Logic Device Option D: Complex Preset Logic Device 10. In verilog HDL the operator <= is used for Option A: Blocking assignment	Option A:	present state
Option D: external inputs 8. The internal structure of MSI counter IC 7493 consist of Option A: Mod 2 and Mod 6 counter Option B: Mod 2 and Mod 8 counter Option C: Mod 5 and Mod 8 counter Option D: Mod 2 and Mod 5 counter 9. What does CPLD stand for Option A: Complex Programmable Logic Device Option B: Combinational Programmable Logic Device Option C: Combined Preset Logic Device Option D: Complex Preset Logic Device 10. In verilog HDL the operator <= is used for Option A: Blocking assignment	Option B:	past state
8. The internal structure of MSI counter IC 7493 consist of Option A: Mod 2 and Mod 6 counter Option B: Mod 2 and Mod 8 counter Option C: Mod 5 and Mod 8 counter Option D: Mod 2 and Mod 5 counter 9. What does CPLD stand for Option A: Complex Programmable Logic Device Option B: Combinational Programmable Logic Device Option C: Combined Preset Logic Device Option D: Complex Preset Logic Device 10. In verilog HDL the operator <= is used for Option A: Blocking assignment	Option C:	Present state and input
Option A: Mod 2 and Mod 6 counter Option B: Mod 2 and Mod 8 counter Option C: Mod 5 and Mod 8 counter Option D: Mod 2 and Mod 5 counter 9. What does CPLD stand for Option A: Complex Programmable Logic Device Option B: Combinational Programmable Logic Device Option C: Combined Preset Logic Device Option D: Complex Preset Logic Device 10. In verilog HDL the operator <= is used for Option A: Blocking assignment	Option D:	external inputs
Option A: Mod 2 and Mod 6 counter Option B: Mod 2 and Mod 8 counter Option C: Mod 5 and Mod 8 counter Option D: Mod 2 and Mod 5 counter 9. What does CPLD stand for Option A: Complex Programmable Logic Device Option B: Combinational Programmable Logic Device Option C: Combined Preset Logic Device Option D: Complex Preset Logic Device 10. In verilog HDL the operator <= is used for Option A: Blocking assignment		
Option B: Mod 2 and Mod 8 counter Option C: Mod 5 and Mod 8 counter Option D: Mod 2 and Mod 5 counter 9. What does CPLD stand for Option A: Complex Programmable Logic Device Option B: Combinational Programmable Logic Device Option C: Combined Preset Logic Device Option D: Complex Preset Logic Device 10. In verilog HDL the operator <= is used for Option A: Blocking assignment	8.	The internal structure of MSI counter IC 7493 consist of
Option C: Mod 5 and Mod 8 counter Option D: Mod 2 and Mod 5 counter 9. What does CPLD stand for Option A: Complex Programmable Logic Device Option B: Combinational Programmable Logic Device Option C: Combined Preset Logic Device Option D: Complex Preset Logic Device 10. In verilog HDL the operator <= is used for Option A: Blocking assignment	Option A:	Mod 2 and Mod 6 counter
Option D: Mod 2 and Mod 5 counter 9. What does CPLD stand for Option A: Complex Programmable Logic Device Option B: Combinational Programmable Logic Device Option C: Combined Preset Logic Device Option D: Complex Preset Logic Device 10. In verilog HDL the operator <= is used for Option A: Blocking assignment	Option B:	Mod 2 and Mod 8 counter
9. What does CPLD stand for Option A: Complex Programmable Logic Device Option B: Combinational Programmable Logic Device Option C: Combined Preset Logic Device Option D: Complex Preset Logic Device 10. In verilog HDL the operator <= is used for Option A: Blocking assignment	Option C:	Mod 5 and Mod 8 counter
Option A: Complex Programmable Logic Device Option B: Combinational Programmable Logic Device Option C: Combined Preset Logic Device Option D: Complex Preset Logic Device 10. In verilog HDL the operator <= is used for Option A: Blocking assignment	Option D:	Mod 2 and Mod 5 counter
Option A: Complex Programmable Logic Device Option B: Combinational Programmable Logic Device Option C: Combined Preset Logic Device Option D: Complex Preset Logic Device 10. In verilog HDL the operator <= is used for Option A: Blocking assignment		
Option B: Combinational Programmable Logic Device Option C: Combined Preset Logic Device Option D: Complex Preset Logic Device 10. In verilog HDL the operator <= is used for Option A: Blocking assignment	9.	What does CPLD stand for
Option C: Combined Preset Logic Device Option D: Complex Preset Logic Device 10. In verilog HDL the operator <= is used for Option A: Blocking assignment	Option A:	Complex Programmable Logic Device
Option D: Complex Preset Logic Device 10. In verilog HDL the operator <= is used for Option A: Blocking assignment	Option B:	Combinational Programmable Logic Device
10. In verilog HDL the operator <= is used for Option A: Blocking assignment	Option C:	Combined Preset Logic Device
Option A: Blocking assignment	Option D:	Complex Preset Logic Device
Option A: Blocking assignment		
	10.	In verilog HDL the operator <= is used for
Option B: Non-Blocking assignment	Option A:	Blocking assignment
	Option B:	Non-Blocking assignment
Option C: Single line comment	Option C:	Single line comment
Option D: Logical left shift	Option D:	Logical left shift

Q2.	
(20 Marks)	
A	Solve any Two (5 marks each)
i.	Design and implement a half subtractor using gates.
ii.	Draw the table for Boolean Subtraction
iii.	Compare combinational and sequential circuits.
В	Solve any One (10 marks each)
i.	Design a Mod-12 asynchronous counter using J-K Flip–Flops.
ii.	Write a program using Verilog HDL to implement a 8:1 multiplexer.

Q3. (20 Marks)	
A	Solve any Two out of Three (10 marks each)
i.	Design and implement half subtractor circuit using a 3:8 decoder IC 74138.
ii.	Analyze the given state machine and draw the state diagram.

Q4.	
(20 Marks)	
A	Solve any Four out of Six (5 marks each)
i.	Explain with neat diagrams working of IC7483
ii.	State the differences between mealy and moore machine.
iii.	Write a short note on Complex Programmable Logic Devices.
iv	Explain with suitable diagrams working of IC74163.
V	Write a program using Verilog HDL for implementing a 8:1 Multiplexer
vi	Explain in brief about the interfacing of CMOS to TTL ICs.