Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev 2012 Examination: Third Year Semester V

Course Code: ETC501 and Course Name: Microcontrollers and Applications
Time: 1 hour

Max. Marks: 50

For the students:- All the Questions are compulsory and carry equal marks .

Q1.	Which of the following is not a microcontroller-based system?	
Option A:	Washing machine	
Option B:	Traffic light system	
Option C:	Air conditioner	
Option D:	Laptop	
1		
Q2.	In 8051, which of the following pair of ports is used to put valid addresses bit to access external memory?	
Option A:	Port 0 & Port 1	
Option B:	Port 1 & Port 2	
Option C:	Port 2 & Port 3	
Option D:	Port 0 & Port 2	
Q3.	In 8051, on Reset the SP gets the value:	
Option A:	2FH	
Option B:	0FH	
Option C:	07H	
Option D:	F0H	
Q4.	How many timers are available in 8051?	
Option A:	2, 16 bit	
Option B:	2, 8 bit	
Option C:	1, 8 bit	
Option D:	1, 16 bit	
Q5.	Which mode of timer TMOD is used during serial communication of 8051?	
Option A:	Mode-0	
Option B:	Mode-1	
Option C:	Mode-2	
Option D:	Mode-3	
Q6.	What is most popular and efficient baud rate for an efficient operation of serial port devices in 8051 microcontroller?	
Option A:	1200 kbps	
Option B:	2400 kbps	
Option C:	9600 kbps	

	Examination 2020
Option D:	9600 bps
	L 0051 L i Ci L i DODAO
Q7.	In 8051, what is meaning of instruction POP 3?
Option A:	Popping content of stack three times
Option B:	Popping content of stack into R3 register
Option C:	Popping content of three stacks into register
Option D:	Popping content of stacks into three registers
Q8.	In 8051, which register bank of PSW will be selected with following two instructions SETB PSW.4 SETB PSW.3
Option A:	BANK 1
Option B:	BANK 2
Option C:	BANK 0
Option D:	BANK 3
Q9.	In 8051, "LCALL addr16" instruction the symbol, 'addr16' represents the 16-bit address which is used by the instructions to specify the
Option A:	destination address of CALL
Option B:	destination address of JUMP
Option C:	Source address of JUMP
Option D:	Source address of CALL
Q10.	In 8051, what value must A have in order for the following instruction not to jump? CJNE A, #53,OVER
Option A:	52
Option B:	53
Option C:	50
Option D:	54
Q11.	When the 8051 receives 8-bit data serially via RxD lines, it raises which flag to indicate that byte has been received?
Option A:	TI
Option B:	RI
Option C:	REN
Option D:	RB8
Q12.	Half stepping stepper motor hassteps sequence
Option A:	4
Option B:	8
Option C:	16
Option D:	2

	Examination 2020
Q13.	Why we need a ULN2803 in driving a relay?
Option A:	To increase current driving capacity
Option B:	For switching
Option C:	To decrease current driving capacity
Option D:	To decrease power in relay
Q14.	A Stepper motor with a step angle of 5 degree hassteps per revolution.
Option A:	72
Option B:	48
Option C:	24
Option D:	144
Q15.	Which statement is correct in case of Common cathode seven segment display interfacing with Port P2 of 8051?
Option A:	Anode of LEDs are connected to Port2 pins & cathode are commonly connected to ground
Option B:	Anodes & Cathode of LED's commonly connected to ground
Option C:	Cathode of LED's commonly connected to Port 2 pins
Option D:	Anodes & Cathode of LED's commonly connected to VCC
Q16.	Which processor architecture is used in ARM7?
Option A:	8-bit CISC
Option B:	8-bit RISC
Option C:	32-bit RISC
Option D:	32-bit CISC
Q17.	How many registers are there in arm7?
Option A:	16
Option B:	32
Option C:	37
Option D:	64
Q18.	In an ARM7 instruction, how many bits are required to specify the Register operands?
Option A:	32 bits
Option B:	16 bits
Option C:	4 bits
Option D:	2 bits
Q19.	ARM7 has how many pipeline stages?
Option A:	2
Option B:	3
- r D.	1 -

Option C:	4
Option D:	5
Q20.	Which series of ARM processor is generally used in an embedded system?
Option A:	Cortex A
Option B:	Cortex R
Option C:	Cortex M
Option D:	Cortex Embedded
Q21.	BX instruction in ARM7 is used for performing
Option A:	Branching operation
Option B:	Branch and exchange operation
Option C:	Branch and data transfer operation
Option D:	Branch with link operation
Ť	
Q22.	In ARM, after execution of the ADD r3, r1, r2 instruction, result will be stored in
Option A:	r1 register
Option B:	r2 register
Option C:	r3 register
Option D:	Accumulator register
Q23.	In ARM, SBC r0, r1, r2 instruction will perform following operation.
Option A:	r0:=r1-r2+!C
Option B:	r0:=r1-r2-!C
Option C:	r0:=r1+r2+C
Option D:	r0:=r1-r2-C
<u>*</u>	
Q24.	The register required to control the function of Port 0 pins P0.16 to P0.31 of
	LPC2148 is
Option A:	PINSEL0
Option B:	PINSEL1
Option C:	PINSEL2
Option D:	PINSEL3
	Choose the correct sequence for embedded system design process 1) Requirement specifications
Q25.	2) Hardware and software design
Q23.	3) System design
	4) Hardware and Firmware Integration
Option A:	1-2-3-4
Option B:	1-3-2-4
Option C:	1-4-2-3

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev 2012 Examination: Third Year Semester V

Course Code: ETC501 and Course Name: Microcontrollers and Applications

Time: 1 hour Max. Marks: 50

Question Number	Correct Option
Q1.	D
Q2.	D
Q3.	С
Q4	A
Q5	С
Q6	D
Q7	В
Q8.	D D C A C D B D A
Q9.	A
Q10.	В
Q11.	В
Q12.	В
Q1. Q2. Q3. Q4 Q5 Q6 Q7 Q8. Q9. Q10. Q11. Q12. Q13.	B A A C C C C B C
Q14. Q15. Q16.	A
Q15.	A
Q16.	С
Q17.	С
Q18. Q19.	С
Q19.	В
Q20.	С
O21	B
Q22.	С
Q23.	В
Q23. Q24.	В
Q25.	В

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev2012

Examination: Third Year Semester: V

Course Code: ETC502 and Course Name: Analog Communication

Time: 1hour Max. Marks: 50

For the students: - All the Questions are compulsory and carry equal marks.

Q1.	Which is the type of Internal Noise?
Option A:	Atmospheric Noise
Option B:	Thermal Noise
Option C:	Man-Made Noise
Option D:	Extraterrestrial Noise
Q2.	A receiver connected to an antenna whose resistance is 75 Ohm has an equivalent
	noise resistance of 40 Ohm. Calculate the receiver noise figure.
Option A:	1.533
Option B:	2.5
Option C:	2
Option D:	2.3
Q3.	In AM, modulating signal frequency is 10 KHz and carrier frequency is 1MHz.
	Calculate the upper sideband frequency.
Option A:	990 KHz
Option B:	1 MHz
Option C:	1.1 MHZ
Option D:	1010 KHz
Q4.	The higher percentage of modulation is preferred for strong received signal,
	because higher percentage of modulation means_value of modulation index, m.
Option A:	Higher
Option B:	Moderate
Option C:	Lower
Option D:	Zero
Q5.	A transmitter transmits 10KW of power without modulation and 12KW after
	modulation. What is the modulation index?
Option A:	0.8
Option B:	0.44
Option C:	0.24
Option D:	1
Q6.	The envelope detector is
Option A:	Synchronous detector
Option B:	Asynchronous detector
Option C:	Product demodulator
Option D:	Coherent detector

Q7.	Determine the Nyquist rate for a continuous time signal, $x(t)=6\cos 50\pi t + 20\sin t$
V	$300\pi t$
Option A:	25Hz
Option B:	175Hz
Option C:	300Hz
Option D:	150Hz
1	
Q8.	The maximum deviation allowed in an FM broadcast system is 75KHz. If the modulating signal is a single tone sinusoid of 8KHz, determine the bandwidth of FM signal.
Option A:	83KHz
Option B:	67KHz
Option C:	100KHz
Option D:	166KHz
Q9.	Which of the following methods is not used for FM generation?
Option A:	Diode Ring Modulator
Option B:	Reactance modulator using FET
Option C:	Varactor diode modulator
Option D:	Transistor reactance modulator
Q10.	The frequency of the input signal of a receiver is 1000 KHz. The local oscillator
	frequency required to tune this signal is
Option A:	1450KHz
Option B:	570KHz
Option C:	550KHz
Option D:	530KHz
Q11.	The noise immunity of PAM signal is
Option A:	Better than PWM
Option B:	Better than PPM
Option C:	Better than PWM but worse than PPM
Option C:	Poorer than PWM as well as PPM
Option D.	1 Oolei than I wivi as wen as I I ivi
Q12.	The type of audio amplifier used to drive the loud speaker is
Option A:	Class A Push Pull Amplifier
Option B:	Class B Push Pull Amplifier
Option C:	Class AB Amplifier
Option D:	Class C Amplifier
<u> </u>	1
Q13.	In FM receivers, the demodulators are primarily used for
Option A:	Converting phase changes into amplitude changes
Option B:	Converting frequency changes into amplitude changes
Option C:	Suppressing the amplitude variations
Option D:	Suppressing the frequency variations
Q14.	The frequency bands for the operation of TV are

Examination 2020		
Option A:	MW and VLF	
Option B:	SW and VHF	
Option C:	VLF and VHF	
Option D:	MW and SW	
Q15.	The double spotting can be used for	
Option A:	Calculating the sensitivity of a receiver	
Option B:	Calculating the stability of a receiver	
Option C:	Calculating the selectivity of a receiver	
Option D:	Calculating the IF of a receiver	
016		
Q16.	The spectrum of ideally sampled signal consists of	
Option A:	The spectrum of the original signal only	
Option B:	The spectrum of the original signal and its infinite replicas centered about the	
Ontion C	sampling frequency and its harmonics.	
Option C: Option D:	The sampling frequency The sampling frequency and its harmonics only	
Option D:	The sampling frequency and its narmonics only	
Q17.	The AGC voltage is obtained at	
Option A:	Input of the IF amplifier	
Option B:	Output of the IF amplifier	
Option C:	Input of the detector	
Option D:	Output of the detector	
Орион В.	Output of the detector	
Q18.	In FM, if the deviation is 10KHz and modulating frequency is 1 KHz and if the	
	peak modulating voltage is 2V, then the modulation index is	
Option A:	20	
Option B:	10	
Option C:	5	
Option D:	0.5	
010	Amplitude of PM wave	
Q19. Option A:	remains constant	
Option B:	changes in proportion with the modulating voltage	
Option C:	changes in proportion with the modulating voltage changes in proportion with the modulating frequency	
Option C:	changes in proportion with the modulating frequency	
орион D.	changes in proportion with carrier voltage	
Q20.	Identify the false statement	
Option A:	TDM is generally preferred for the digital signals.	
Option B:	The basic group of FDM consists of 12 voice channels.	
Option C:	Generally, SSB techniques is preferred for FDM.	
Option D:	FDM is preferred for multiplexing of digital signals.	
	1 0 0	
Q21.	The SSBSC is used for the following application:	
Option A:	Radio Broadcasting	
Option B:	Point to Point mobile communication	
Option C:	Telegraphy and Telephony	
Option D:	TV transmission	
<u> </u>		

Q22.	In a phase shift method of SSB generation, one sideband is cancelled out due to
Option A:	Carrier Suppression
Option B:	Phase Inversion
Option C:	Carrier Inversion
Option D:	Sharp selectivity
•	
Q23.	Find the false statement
Option A:	PWM need synchronization between the transmitter and receiver.
Option B:	The PWM pulses have variable power content.
Option C:	The bandwidth requirement of PWM is higher than that of a PAM signal.
Option D:	PPM pulses need higher bandwidth as compared to PAM.
Q24.	The bandwidth of a TV signal transmitted using the VSB system is
Option A:	5.5 MHz
Option B:	5 MHz
Option C:	6.5 MHz
Option D:	7 MHz
Q25.	Find the correct option.
	S1: The antialiasing filter is basically a bandpass filter used for band limiting
	S2: The antialiasing filter is basically a low pass filter used as band limiting filter.
Option A:	S2 is correct.
Option B:	S1 and S2 are correct
Option C:	S1 and S2 are incorrect.
Option D:	S1 is correct.

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev2012

Examination: Third Year Semester: V

Course Code: ETC502 and Course Name: Analog Communication

Time: 1hour Max. Marks: 50

Question Number	Correct Option
Q1.	В
Q2.	A
Q3.	D
Q4	A
Q5	В
Q6	В
Q7	C
Q8.	D
Q9.	A
Q10.	A
Q11.	D
Q12.	С
Q13.	В
Q14.	D
Q15.	C
Q16.	В
Q17.	D
Q18.	В
Q19.	A
Q20.	D
Q21.	В
Q22.	В
Q23.	A
	D
Q24. Q25.	A

Program: Electronics & Telecommunication Engineering

Curriculum Scheme: Rev 2012 Examination: Third Year Semester III

Course Code: ETC503 and Course Name: Random Signal Analysis

Time: 1 hour Max. Marks: 50

For the students:- All the Questions are compulsory and carry equal marks .

0.1	ICD(A) =1 41 A :11-1	
Q1.	If $P(A) = 1$, then A is called as a	
Option A:	Impossible Event	
Option B:	Certain event	
Option C:	Union Event	
Option D:	Probable Event	
Q2.	Two unbiased coins are tossed. What is the probability of getting at only one head?	
Option A:	1/2	
Option B:	1/4	
Option C:	1	
Option D:	3/4	
Q3.	Suppose that in a certain region the daily rainfall (in inches) is a continuous random	
	variable X with p.d.f $f(x)$ given by	
	$f(x) = 2x - x^2$ for $0 < x < 3$ and $f(x) = 0$ elsewhere. Find the	
	probability that on a given day in this region, the rainfall is between 1 and 2	
	inches.	
Option A:	2/3	
Option B:	1/3	
Option C:	3/4	
Option D:	2/5	
_		
Q4.	If a random variable X is exponential distributed with density function as	
	$f(x) = \lambda e^{-\lambda x}$ then mean is	
Option A:	1	
Option B:	$1/\lambda$	
Option C:	$1/\lambda^2$	
Option D:	0	
_		
Q5.	E(X) = np is for which distribution?	
Option A:	Bernoulli's	
Option B:	Poisson	
Option C:	Binomial	
Option D:	Normal	
Q6.	The probability distribution of X is: Determine the mean	
	X -1 0 1 2 3	
	$P(X=x) \mid 0.2 \mid 0.2 \mid 0.1 \mid 0.3 \mid 0.2$	

Option A: 1 Option B: 0.7 Option D: 1.5 Q7. A continuous random variable has probability density function as $f(x) = 6(x-x^2)$; $0 < x < 1$, and mean is 0.5, then what is variance Option A: 1/15 Option B: 1/5 Option C: 1/10 Option D: 1/20 Q8. If X is a non-negative random variable then any positive constant a, $P(X \ge a) \le e$ -at M(0), where M(0) is the MGF of X stated by. Option A: Chernoff Bond Option B: Bayes Bond Option B: Bayes Bond Option D: Inequality Bond Q9. The maximum magnitude of a characteristic function is Option A: 0 Option B: -1 Option A: 0 Option B: -1 Option D: 0.5 Q10. Find the value of k if $f(x, y) = k(1-x)(1-y)$ for $0 < x, y < 1$ is to be joint density function. Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find E(XY) Option B: 2 Option C: 3 Option C: 3 Option C: 3 Option C: $f(x,y) = k(1-x)(1-y) = e^{-(x+y)}$; $f(x,y) = e^{-(x+y)} = e^{-(x+y)} = e^{-(x+y)}$; $f(x,y) = e^{-(x+y)} = e^{-(x+y)} = e^{-(x+y)}$; $f(x,y) = e^{-(x+y)} = e^{-(x+y)$		
Option C: 1.1 Option D: 1.5 Q7. A continuous random variable has probability density function as $f(x) = 6(x-x^2)$; $0 < x < 1$, and mean is 0.5, then what is variance Option A: 1/15 Option C: 1/10 Option D: 1/20 Q8. If X is a non-negative random variable then any positive constant a, $P(X \ge a) \le e$ at M(t), where M(t) is the MGF of X stated by. Option B: Bayes Bond Option B: Bayes Bond Option D: Inequality Bond Q9. The maximum magnitude of a characteristic function is Option A: 0 Option A: 0 Option B: -1 Option B: -1 Option C: 1 Option D: 0.5 Q10. Find the value of k if f (x, y) = k(1-x)(1-y) for 0 < x, y < 1 is to be joint density function. Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; x≥0, y≥0 Find E(XY) Option A: 1 Option B: 2 Option C: 3 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $F_{XY} = 1$ Option D: $F_{XY} = 1$	Option A:	<u> </u>
Option D: 1.5 Q7. A continuous random variable has probability density function as $f(x) = 6(x-x^2)$; $0 < x < 1$, and mean is 0.5, then what is variance Option A: 1/15 Option B: 1/5 Option D: 1/20 Q8. If X is a non-negative random variable then any positive constant a, $P(X \ge a) \le e$ -at M(t), where M(t) is the MGF of X stated by. Option A: Chernoff Bond Option B: Bayes Bond Option C: Statistics Bond Option D: Inequality Bond Q9. The maximum magnitude of a characteristic function is Option A: Option A: Option B: -1 Option C: 1 Option C: 1 Option D: 0.5 Q10. Find the value of k if $f(x, y) = k(1-x)(1-y)$ for $0 < x, y < 1$ is to be joint density function. Option B: S Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find E(XY) Option A: 1 Option A: 1 Option C: 3 Option C: 3 Option C: 3 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option B: $f(x,y) = f(x,y) =$		
Q7. A continuous random variable has probability density function as $f(x) = 6(x-x^2)$; $0 - x < 1$, and mean is 0.5, then what is variance Option A: 1/15 Option B: 1/5 Option C: 1/10 Option D: 1/20 Q8. If X is a non-negative random variable then any positive constant a, $P(X \ge a) \le e$ at M(t), where M(t) is the MGF of X stated by. Option A: Chernoff Bond Option B: Bayes Bond Option C: Statistics Bond Option D: Inequality Bond Q9. The maximum magnitude of a characteristic function is Option A: 0 Option B: -1 Option C: 1 Option D: 0.5 Q10. Find the value of k if f (x, y) = k(1-x)(1-y) for 0 < x, y < 1 is to be joint density function. Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; x≥0, y≥0 Find E(XY) Option A: 1 Option B: 2 Option C: 3 Option C: 3 Option C: 3 Option C: 3 Option C: $F(x) = e^{-(x+y)}$; x≥0, y≥0 Find E(XY) Option B: 2 Option C: $F(x) = e^{-(x+y)}$ Option A: 1 Option B: 2 Option C: 3 Option C: $F(x) = e^{-(x+y)}$ Option A: $F(x) = e^{-(x+y)}$ Option A: $F(x) = e^{-(x+y)}$ Option C: 3 Option D: $F(x) = e^{-(x+y)}$ Option C: $F(x) = e^{-(x+y)}$ Option D: $F(x)$		1.1
Option A: 1/15 Option D: 1/20 Q8. If X is a non-negative random variable then any positive constant a, $P(X \ge a) \le e$ at M(t), where M(t) is the MGF of X stated by. Option A: Chernoff Bond Option D: Bayes Bond Option D: Inequality Bond Q9. The maximum magnitude of a characteristic function is Option B: -1 Option A: O Option B: -1 Option D: Similar the value of k if f(x, y) = k(1-x)(1-y) for 0 < x, y < 1 is to be joint density function. Option A: 10 Option B: 5 Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; x≥0, y≥0 Find E(XY) Option C: 3 Option C: 7 Option D: 7 Option D: 7 Option C: 7 Option D: 7 Opt	Option D:	1.5
Option A: 1/15 Option D: 1/20 Q8. If X is a non-negative random variable then any positive constant a, $P(X \ge a) \le e$ at M(t), where M(t) is the MGF of X stated by. Option A: Chernoff Bond Option D: Bayes Bond Option D: Inequality Bond Q9. The maximum magnitude of a characteristic function is Option B: -1 Option A: O Option B: -1 Option D: Similar the value of k if f(x, y) = k(1-x)(1-y) for 0 < x, y < 1 is to be joint density function. Option A: 10 Option B: 5 Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; x≥0, y≥0 Find E(XY) Option C: 3 Option C: 7 Option D: 7 Option D: 7 Option C: 7 Option D: 7 Opt		
Option A: 1/15 Option B: 1/5 Option C: 1/10 Option D: 1/20 Q8. If X is a non-negative random variable then any positive constant a, $P(X \ge a) \le c$ - at M(t), where M(t) is the MGF of X stated by. Option A: Chernoff Bond Option B: Bayes Bond Option C: Statistics Bond Option D: Inequality Bond Q9. The maximum magnitude of a characteristic function is Option A: 0 Option A: 0 Option A: 0 Option B: -1 Option C: 1 Option D: 0.5 Q10. Find the value of k if $f(x, y) = k(1-x)(1-y)$ for $0 \le x, y \le 1$ is to be joint density function. Option A: 10 Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find $E(XY)$ Option B: 2 Option C: 3 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option B: $F(X,Y) = 0$ Option C: $F(X,Y) = 0$ Option D: $F(X,Y) = 0$ Option D: $F(X,Y) = 0$ Option C: $F(X,Y) = 0$ Option D: $F(X,Y) = 0$ Option C: $F(X,Y) = 0$ Option D:	Q7.	A continuous random variable has probability density function as $f(x) = 6(x-x^2)$;
Option B: $1/5$ Option C: $1/10$ Option D: $1/20$ Q8. If X is a non-negative random variable then any positive constant a, $P(X \ge a) \le e$ - at M(t), where M(t) is the MGF of X stated by. Option A: Chernoff Bond Option B: Bayes Bond Option C: Statistics Bond Option D: Inequality Bond Q9. The maximum magnitude of a characteristic function is Option A: 0 Option B: -1 Option C: 1 Option D: 0.5 Q10. Find the value of k if $f(x, y) = k(1-x)(1-y)$ for $0 < x, y < 1$ is to be joint density function. Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y)=e^{-(x+y)}$; $x\ge 0$, $y\ge 0$ Find $E(XY)$ Option A: 1 Option B: 2 Option C: 3 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $R_{XY} = 1$ Option B: $R_{XY} = 0$ Option C: $R_{XY} = -1$ Option D: $R_{XY} = -1$ Option D: $R_{XY} = -1$ Find the marginal density of Y if the joint density function of (X, Y) is given by $f(X, Y) = 8xy$, $0 \le x \le y \le 1$		
Option C: 1/10 Option D: 1/20 Q8. If X is a non-negative random variable then any positive constant a, $P(X \ge a) \le e$ -at $M(t)$, where $M(t)$ is the MGF of X stated by. Option A: Chernoff Bond Option B: Bayes Bond Option D: Inequality Bond Q9. The maximum magnitude of a characteristic function is Option A: 0 Option B: -1 Option C: 1 Option D: 0.5 Q10. Find the value of k if $f(x, y) = k(1-x)(1-y)$ for $0 < x, y < 1$ is to be joint density function. Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find $E(XY)$ Option B: 0 Option B: 2 Option C: 3 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option B: $E(XY)$ Option B: $E(XY)$ Option C: $E(XY)$ Option C: $E(XY)$ Option C: $E(XY)$ Option D: $E(XY)$ Option C: $E(XY)$ Option D: $E(XY)$ Option C: $E(XY)$ Option D:	Option A:	1/15
Option D: 1/20 Q8. If X is a non-negative random variable then any positive constant a, $P(X \ge a) \le c$ -at M(t), where M(t) is the MGF of X stated by. Option A: Chernoff Bond Option B: Bayes Bond Option D: Statistics Bond Option D: Inequality Bond Q9. The maximum magnitude of a characteristic function is Option A: O Option B: -1 Option C: 1 Option D: 0.5 Q10. Find the value of k if $f(x, y) = k(1-x)(1-y)$ for $0 < x, y < 1$ is to be joint density function. Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find $E(XY)$ Option A: Option A: Option A: Option A: Option C: 3 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if $E(X,Y) = E(X,Y) = E(X,Y)$ Option B: $E(X,Y) = E(X,Y) = E(X,Y)$ Option C: $E(X,Y) = E(X,Y) = E(X,Y)$ Find the marginal density of Y if the joint density function of $E(X,Y)$ is given by $E(X,Y) = E(X,Y) = E(X,Y) = E(X,Y)$ Find the marginal density of Y if the joint density function of $E(X,Y)$ is given by $E(X,Y) = E(X,Y) = E(X,Y)$ Option D: Find the marginal density of Y if the joint density function of $E(X,Y)$ is given by $E(X,Y) = E(X,Y)$		
Q8. If X is a non-negative random variable then any positive constant a, $P(X \ge a) \le e$ at M(t), where M(t) is the MGF of X stated by. Option A: Chernoff Bond Option B: Bayes Bond Option D: Inequality Bond Q9. The maximum magnitude of a characteristic function is Option A: Option C: 1 Option C: 1 Option D: O.5 Q10. Find the value of k if $f(x, y) = k(1-x)(1-y)$ for $0 < x, y < 1$ is to be joint density function. Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find $E(XY)$ Option A: 1 Option A: 1 Option A: 1 Option B: 2 Option C: 3 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $F(X,Y) = 0$ Option C: $F(X,Y) = 0$ Option C: $F(X,Y) = 0$ Option D: $F(X,Y) = 0$ Optio	Option C:	1/10
Option A: Chernoff Bond Option B: Bayes Bond Option C: Statistics Bond Option D: Inequality Bond Option A: 0 Option A: 0 Option A: 0 Option B: -1 Option D: 0.5 Q10. Find the value of k if $f(x, y) = k(1-x)(1-y)$ for $0 < x, y < 1$ is to be joint density function. Option A: 1 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find $E(XY)$ Option A: 1 Option B: 2 Option C: 3 Option C: 3 Option C: 3 Option C: 4 Q11. If yoint pdf of $E(X,Y)$ is given by $E(X,Y) = e^{-(x+y)}$; E	Option D:	1/20
Option A: Chernoff Bond Option B: Bayes Bond Option C: Statistics Bond Option D: Inequality Bond Option A: 0 Option A: 0 Option A: 0 Option B: -1 Option D: 0.5 Q10. Find the value of k if $f(x, y) = k(1-x)(1-y)$ for $0 < x, y < 1$ is to be joint density function. Option A: 1 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find $E(XY)$ Option A: 1 Option B: 2 Option C: 3 Option C: 3 Option C: 3 Option C: 4 Q11. If yoint pdf of $E(X,Y)$ is given by $E(X,Y) = e^{-(x+y)}$; E		
Option A: Chernoff Bond Option B: Bayes Bond Option C: Statistics Bond Option D: Inequality Bond Q9. The maximum magnitude of a characteristic function is Option A: 0 Option B: -1 Option D: 0.5 Q10. Find the value of k if $f(x, y) = k(1-x)(1-y)$ for $0 < x, y < 1$ is to be joint density function. Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find $E(XY)$ Option A: 1 Option B: 2 Option C: 3 Option C: 3 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option B: $F(X,Y) = 0$ Option B: $F(X,Y) = 0$ Option C: $F(X,Y) = 0$ Option D: $F(X,Y) = 0$ O	Q8.	If X is a non-negative random variable then any positive constant a, $P(X \ge a) \le e$
Option B: Bayes Bond Option C: Statistics Bond Option D: Inequality Bond Q9. The maximum magnitude of a characteristic function is Option A: 0 Option B: -1 Option C: 1 Option D: 0.5 Q10. Find the value of k if $f(x, y) = k(1-x)(1-y)$ for $0 < x, y < 1$ is to be joint density function. Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find $E(XY)$ Option A: 1 Option B: 2 Option C: 3 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $F_{XY} = 1$ Option B: $F_{XY} = 0$ Option C: $F_{XY} = 0$ Option D: $F_{XY} = 0$ Find the marginal density of Y if the joint density function of (X, Y) is given by $f_{XY}(x, y) = 8xy$, $0 \le x \le y \le 1$		
Option C: Statistics Bond Option D: Inequality Bond Q9. The maximum magnitude of a characteristic function is Option A: 0 Option B: -1 Option C: 1 Option D: 0.5 Q10. Find the value of k if $f(x, y) = k(1-x)(1-y)$ for $0 < x, y < 1$ is to be joint density function. Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find $E(XY)$ Option B: 2 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $F(XY) = 0$ Option B: $F(XY) = 0$ Option C: $F(XY) = 0$ Option C: $F(XY) = 0$ Option D: $F(XY) = 0$ O	Option A:	Chernoff Bond
Option D: Inequality Bond Q9. The maximum magnitude of a characteristic function is Option A: 0 Option B: -1 Option C: 1 Option D: 0.5 Q10. Find the value of k if f (x, y) = k(1-x)(1-y) for $0 < x, y < 1$ is to be joint density function. Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find E(XY) Option A: 1 Option B: 2 Option C: 3 Option C: 3 Option C: 3 Option C: 4 Q12. Two random variables are said to be orthogonal if Option B: $R_{XY} = 1$ Option C: $R_{XY} = 0$ Option C: $R_{XY} = 0$ Option D: $R_{XY} = 0$	Option B:	Bayes Bond
Option D: Inequality Bond Q9. The maximum magnitude of a characteristic function is Option A: 0 Option B: -1 Option C: 1 Option D: 0.5 Q10. Find the value of k if f (x, y) = k(1-x)(1-y) for $0 < x, y < 1$ is to be joint density function. Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find E(XY) Option A: 1 Option B: 2 Option C: 3 Option C: 3 Option C: 3 Option C: 4 Q12. Two random variables are said to be orthogonal if Option B: $R_{XY} = 1$ Option C: $R_{XY} = 0$ Option C: $R_{XY} = 0$ Option D: $R_{XY} = 0$	Option C:	
Option A: 0 Option B: -1 Option C: 1 Option D: 0.5 Q10. Find the value of k if $f(x, y) = k(1-x)(1-y)$ for $0 < x, y < 1$ is to be joint density function. Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find E(XY) Option A: 1 Option B: 2 Option C: 3 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $F_{XY} = 1$ Option B: $F_{XY} = 0$ Option C: $F_{XY} = 0$ Option C: $F_{XY} = 0$ Option D: $F_{XY} = 0$	Option D:	Inequality Bond
Option A: 0 Option B: -1 Option C: 1 Option D: 0.5 Q10. Find the value of k if $f(x, y) = k(1-x)(1-y)$ for $0 < x, y < 1$ is to be joint density function. Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find E(XY) Option A: 1 Option B: 2 Option C: 3 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $F_{XY} = 1$ Option B: $F_{XY} = 0$ Option C: $F_{XY} = 0$ Option C: $F_{XY} = 0$ Option D: $F_{XY} = 0$		
Option A: 0 Option B: -1 Option C: 1 Option D: 0.5 Q10. Find the value of k if $f(x, y) = k(1-x)(1-y)$ for $0 < x, y < 1$ is to be joint density function. Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find E(XY) Option A: 1 Option B: 2 Option C: 3 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $F_{XY} = 1$ Option B: $F_{XY} = 0$ Option C: $F_{XY} = 0$ Option C: $F_{XY} = 0$ Option D: $F_{XY} = 0$	Q9.	The maximum magnitude of a characteristic function is
Option C: 1 Option D: 0.5 Q10. Find the value of k if $f(x, y) = k(1-x)(1-y)$ for $0 < x, y < 1$ is to be joint density function. Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y)=e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find $E(XY)$ Option A: 1 Option B: 2 Option C: 3 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $F_{XY} = 1$ Option B: $F_{XY} = 0$ Option C: $F_{XY} = 0$ Option C: $F_{XY} = 0$ Option D: $F_{XY} = 0$	Option A:	
Option D: 0.5 Q10. Find the value of k if $f(x, y) = k(1-x)(1-y)$ for $0 < x$, $y < 1$ is to be joint density function. Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find $E(XY)$ Option A: 1 Option B: 2 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $R_{XY} = 1$ Option B: $R_{XY} = 0$ Option C: $R_{XY} = -1$ Option D: $R_{XY} = 0$	Option B:	-1
Q10. Find the value of k if $f(x, y) = k(1-x)(1-y)$ for $0 < x, y < 1$ is to be joint density function. Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find $E(XY)$ Option A: 1 Option B: 2 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $F_{XY} = 1$ Option B: $F_{XY} = 0$ Option C: $F_{XY} = -1$ Option D: $F_{XY} = -1$	Option C:	1
function. Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find $E(XY)$ Option A: 1 Option B: 2 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $R_{XY} = 1$ Option B: $R_{XY} = 0$ Option C: $R_{XY} = -1$ Option D: $R_{XY} = 1$	Option D:	0.5
function. Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find $E(XY)$ Option A: 1 Option B: 2 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $R_{XY} = 1$ Option B: $R_{XY} = 0$ Option C: $R_{XY} = -1$ Option D: $R_{XY} = 1$		
function. Option A: 10 Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find $E(XY)$ Option A: 1 Option B: 2 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $R_{XY} = 1$ Option B: $R_{XY} = 0$ Option C: $R_{XY} = -1$ Option D: $R_{XY} = 1$	Q10.	Find the value of k if $f(x, y) = k(1-x)(1-y)$ for $0 < x, y < 1$ is to be joint density
Option B: 5 Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find E(XY) Option A: 1 Option B: 2 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $R_{XY} = 1$ Option B: $R_{XY} = 0$ Option C: $R_{XY} = -1$ Option D: $R_{XY} = -1$		
Option C: 2 Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find E(XY) Option A: 1 Option B: 2 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $R_{XY} = 1$ Option B: $R_{XY} = 0$ Option C: Option C: $R_{XY} = -1$ Option D: $R_{XY} = 1$ Option D: $R_{XY} = 1$ Option C: $R_{XY} = 1$ Option C: $R_{XY} = 1$ Option D: $R_{XY} = 1$	Option A:	10
Option D: 4 Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find $E(XY)$ Option A: 1 Option B: 2 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $R_{XY} = 1$ Option B: $R_{XY} = 0$ Option C: $R_{XY} = -1$ Option D: $R_{XY} = -1$	Option B:	5
Q11. If joint pdf of (X,Y) is given by $f(x,y) = e^{-(x+y)}$; $x \ge 0$, $y \ge 0$ Find E(XY) Option A: 1 Option B: 2 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $R_{XY} = 1$ Option B: $R_{XY} = 0$ Option C: $R_{XY} = -1$ Option D: $R_{XY} = -1$ Option D: $R_{XY} = -1$ Option D: $R_{XY} = -1$	Option C:	2
Option A: 1 Option B: 2 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $R_{XY} = 1$ Option B: $R_{XY} = 0$ Option C: $R_{XY} = -1$ Option D: $R_{XY} = -1$ Option D: $R_{XY} = -1$ Option D: $R_{XY} = -1$	Option D:	4
Option A: 1 Option B: 2 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $R_{XY} = 1$ Option B: $R_{XY} = 0$ Option C: $R_{XY} = -1$ Option D: $R_{XY} = -1$ Option D: $R_{XY} = -1$ Option D: $R_{XY} = -1$		
Option A: 1 Option B: 2 Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $R_{XY} = 1$ Option B: $R_{XY} = 0$ Option C: $R_{XY} = -1$ Option D: $R_{XY} = -1$ Option D: $R_{XY} = -1$ Option D: $R_{XY} = -1$	Q11.	If joint pdf of (X,Y) is given by $f(x,y)=e^{-(x+y)}$; $x\ge 0$, $y\ge 0$ Find E(XY)
Option C: 3 Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $R_{XY} = 1$ Option B: $R_{XY} = 0$ Option C: $R_{XY} = -1$ Option D: $R_{XY} = -1$ Option D: $R_{XY} = -1$	Option A:	
Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $R_{XY} = 1$ Option B: $R_{XY} = 0$ Option C: $R_{XY} = -1$ Option D: $R_{XY} = -1$ Option D: $R_{XY} = -1$	Option B:	2
Option D: 4 Q12. Two random variables are said to be orthogonal if Option A: $R_{XY} = 1$ Option B: $R_{XY} = 0$ Option C: $R_{XY} = -1$ Option D: $R_{XY} = -1$ Q13. Find the marginal density of Y if the joint density function of (X, Y) is given by $f_{XY}(x,y) = 8xy, 0 \le x \le y \le 1$		3
Option A: $R_{XY} = 1$ Option B: $R_{XY} = 0$ Option C: $R_{XY} = -1$ Option D: $R_{XY} = -1$ Q13. Find the marginal density of Y if the joint density function of (X, Y) is given by $f_{XY}(x, y) = 8xy, 0 \le x \le y \le 1$		4
Option A: $R_{XY} = 1$ Option B: $R_{XY} = 0$ Option C: $R_{XY} = -1$ Option D: $R_{XY} = -1$ Q13. Find the marginal density of Y if the joint density function of (X, Y) is given by $f_{XY}(x, y) = 8xy, 0 \le x \le y \le 1$		
Option A: $R_{XY} = 1$ Option B: $R_{XY} = 0$ Option C: $R_{XY} = -1$ Option D: $R_{XY} = -1$ Q13. Find the marginal density of Y if the joint density function of (X, Y) is given by $f_{XY}(x, y) = 8xy, 0 \le x \le y \le 1$	Q12.	Two random variables are said to be orthogonal if
Option B: $R_{XY} = 0$ Option C: $R_{XY} = -1$ Option D: $R_{XY} = -1$ Q13. Find the marginal density of Y if the joint density function of (X, Y) is given by $f_{XY}(x, y) = 8xy, 0 \le x \le y \le 1$		Charles
Option C: $R_{XY} = -1$ Option D: $R_{XY} = -1$ Q13. Find the marginal density of Y if the joint density function of (X, Y) is given by $f_{XY}(x,y) = 8xy, 0 \le x \le y \le 1$	Option B:	711
Option D: $R_{XY} =$ Q13. Find the marginal density of Y if the joint density function of (X, Y) is given by $f_{XY}(x,y) = 8xy, 0 \le x \le y \le 1$		
Q13. Find the marginal density of Y if the joint density function of (X, Y) is given by $f_{XY}(x,y) = 8xy, \ 0 \le x \le y \le 1$		
$f_{XY}(x,y) = 8xy, \ 0 \le x \le y \le 1$	<u> </u>	· Al
$f_{XY}(x,y) = 8xy, \ 0 \le x \le y \le 1$	Q13.	Find the marginal density of Y if the joint density function of (X, Y) is given by
AII	<u> </u>	
Option A: $f(y) = y^3$, 0 y 1 Option B: $f(y) = 8y^3$, 0 y 1		
Option B: $ f(y) = 8y^3$, 0 y 1		$f(y) = y^3, 0 y 1$
	Option B:	$f(y) = 8y^3$, 0 y 1

O-4: C-	1 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Option C:	$f(y) = 4y^3$, 0 y 1
Option D:	$f(y) = 4y^2$, 0 y 1
Q14.	Central limit theorem states that the sampling distribution of the sample mean
	follows normal distribution provided
Option A:	sample size is large
Option B:	the standard error of sampling distribution is small
Option C:	sample size is small
Option D:	the standard error of sampling distribution is large
Q15.	Auto correlation function is
Option A:	an odd function of τ
Option B:	may be an even or odd function of τ
Option C:	is both an odd and even function of τ
Option D:	an even function of τ
•	
Q16.	Any random variable which is a function of time is called
Option A:	Mean
Option B:	Random process
Option C:	Random variable
Option D:	Variance
opuon 2.	
Q17.	A random process $X(t) = A \sin(\omega t + \Phi)$, where A and ω are constants and Φ is uniformly distributed random variable between 0 to 2π . Then mean of $X(t)$ is
Option A:	0
Option B:	1
Option C:	2
Option D:	0.5
o p asses = .	
Q18.	Find the average power of a stationary random process whose autocorrelation function is $R(\tau) = e^{-2 \tau }$
Option A:	5
Option B:	2
Option C:	1
Option D:	0
1	
Q19.	Which formula states that average number of customers in the system is the
	product of average arrival rate and the average time spent in the system.
Option A:	Littles Formula
Option B:	Strong Formula
Option C:	Weak Formula
Option D:	Big Formula
opnon D.	
Q20.	A random process $X(t) = A \sin(\omega t + \Phi)$, where A and ω are constants and Φ is uniformly distributed random variable between 0 to 2π . If mean of $X(t)$ is constant and by analyzing autocorrelation, then $X(t)$ is

Option B: Not random process Option C: Not WSS Process Option D: WSS process Q21. Probability distribution of chain is $\pi = [\pi 0, \pi 1, \pi 2]$ then Option A: $\pi 0 + \pi 1 + \pi 2 = 1$ Option B: $\pi 0 + \pi 1 + \pi 2 = 1$ Option D: $\pi 0 + \pi 1 + \pi 2 = 1$ Option D: $\pi 0 + \pi 1 + \pi 2 = 0$ Q22. Chapman Kolmogorov Equation for a discrete Markov chain is Option A: $P^{\min}(i,j) = \sum_{k} P^{\min}(i,k) P^{n}(k,j)$ K Option B: $P^{\min}(i,j) = \sum_{k} P^{m}(i,k) P^{n}(k,j)$ Coption C: $P^{\min}(i,j) = \sum_{k} P^{m}(i,k) P^{n}(k,j)$ Q23. Consider a Markov chain with 2 state transition probability matrix as $P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix}$ then find stationary probabilities of the chain are Option A: $\Pi = (2/3, 2/3)$ Option B: $\Pi = (1/3, 1/3)$ Option D: $\Pi = (1/4, 1/3)$ Q24. A mathematical approach of analysing the congestions and delays of waiting in line is called Option A: Gaussian Process Option B: Queuing Theory Option C: Markov Chain Option D: Poisson process 11 A medical representative visits only three cities A, B, C but he never visits the same city on successive days. If he visits city A today then he visits city B tomorrow without fail. However if he visits either city B or C today, then he is twice as likely to visit city A as the other city. In what proportion does he visit the cities A, B, C in steady state. Option A: 40%, 45%, 15% Option B: 50%, 25%, 25%	Option A:	Random variable
Option C: Not WSS Process Q21. Probability distribution of chain is $\pi = [\pi 0, \pi 1, \pi 2]$ then Option A: $\pi 0 + \pi 1 + \pi 2 = 1$ Option B: $\pi 0 + \pi 1 + \pi 2 = 1$ Option D: $\pi 0 + \pi 1 + \pi 2 = 1$ Option D: $\pi 0 + \pi 1 + \pi 2 = 1$ Option D: $\pi 0 + \pi 1 + \pi 2 = 0$ Q22. Chapman Kolmogorov Equation for a discrete Markov chain is Option A: $P^{mn}(i,j) = \sum_{i} P^{m}(i,k) P^{n}(k,j)$ K Option B: $P^{min}(i,j) = \sum_{i} P^{m}(i,k) P^{n}(k,j)$ Coption C: $P^{min}(i,j) = \sum_{i} P^{m}(i,k) P^{n}(k,j)$ Coption D: $P^{min}(i,j) = \sum_{i} P^{m}(i,k) P^{n}(k,j)$ Q23. Consider a Markov chain with 2 state transition probability matrix as $P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix}$ then find stationary probabilities of the chain are Option A: $II = (2/3, 2/3)$ Option D: $II = (1/3, 1/3)$ Option D: $II = (1/3, 1/3)$ Option D: $II = (1/4, 1/3)$ Q24. A mathematical approach of analysing the congestions and delays of waiting in line is called Option A: Gaussian Process Option B: Queuing Theory Option C: Markov Chain Option D: Poisson process Q25. $I1A medical representative visits only three cities A, B, C but he never visits the same city on successive days. If he visits city A today then he visits city B tomorrow without fail. However if he visits either city B or C today, then he is twice as likely to visit city A as the other city. In what proportion does he visit teither cities A, B, C in steady state. Option A: 40\%, 45\%, 15\% Option B: 50\%, 25\%, 25\%$		
Option D: WSS process Q21. Probability distribution of chain is $\pi = [\pi 0, \pi 1, \pi 2]$ then Option A: $\pi 0 + \pi 1 + \pi 2 = -1$ Option B: $\pi 0 + \pi 1 + \pi 2 = 2$ Option C: $\pi 0 + \pi 1 + \pi 2 = 1$ Option D: $\pi 0 + \pi 1 + \pi 2 = 0$ Q22. Chapman Kolmogorov Equation for a discrete Markov chain is Option A: $ \begin{aligned} P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ K &= 0 \end{aligned} $ Option B: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ K &= 0 \end{aligned} $ Option C: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ K &= 0 \end{aligned} $ Option D: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ K &= 0 \end{aligned} $ Option D: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ K &= 0 \end{aligned} $ Option D: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ K &= 0 \end{aligned} $ Option D: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ K &= 0 \end{aligned} $ Option D: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ K &= 0 \end{aligned} $ Option D: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ K &= 0 \end{aligned} $ Option D: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ K &= 0 \end{aligned} $ Option D: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ K &= 0 \end{aligned} $ Option D: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ K &= 0 \end{aligned} $ Option D: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ K &= 0 \end{aligned} $ Option D: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ K &= 0 $ Option D: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ K &= 0 $ Option D: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ K &= 0 $ Option D: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ N &= 0 $ Option A: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ N &= 0 $ Option B: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ N &= 0 $ Option A: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ N &= 0 $ Option B: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ N &= 0 $ Option C: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ N &= 0 $ Option C: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ N &= 0 $ Option B: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ N &= 0 $ Option C: $ P^{mn} (i,j) &= \sum_{k} P^{m} (i,k) P^{n}(k,j) \\ N &= 0 $ Option B: $ P^{mn} (i,j) &= \sum_$		
Q21. Probability distribution of chain is $\pi = [\pi 0, \pi 1, \pi 2]$ then Option A: $\pi 0 + \pi 1 + \pi 2 = 1$ Option B: $\pi 0 + \pi 1 + \pi 2 = 2$ Option C: $\pi 0 + \pi 1 + \pi 2 = 1$ Option D: $\pi 0 + \pi 1 + \pi 2 = 1$ Option D: $\pi 0 + \pi 1 + \pi 2 = 0$ Q22. Chapman Kolmogorov Equation for a discrete Markov chain is Option A: $P^{mn}(i,j) = \sum_{i} P^{m}(i,k) P^{n}(k,j)$ K Option B: $P^{mn}(i,j) = \sum_{i} P^{m}(i,k) P^{n}(k,j)$ Coption C: $P^{mn}(i,j) = \sum_{i} P^{m}(i,k) P^{n}(k,j)$ Q23. Consider a Markov chain with 2 state transition probability matrix as $P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix}$ then find stationary probabilities of the chain are Option A: $\Pi = (2/3, 2/3)$ Option B: $\Pi = (1/3, 1/3)$ Option C: $\Pi = (2/3, 1/3)$ Option D: $\Pi = (1/4, 1/3)$ Q24. A mathematical approach of analysing the congestions and delays of waiting in line is called Option A: Gaussian Process Option B: Queuing Theory Option C: Markov Chain Option D: Poisson process Q25. $11A medical representative visits only three cities A, B, C but he never visits the same city on successive days. If he visits city A today then he visits city B tomorrow without fail. However if he visits either city B or C today ,then he is twice as likely to visit city A as the other city. In what proportion does he visit the cities A, B, C in steady state. Option A: 40\%, 45\%, 15\% Option B: 50\%, 25\%, 25\%$		
Option A: $\pi 0 + \pi 1 + \pi 2 = 1$ Option B: $\pi 0 + \pi 1 + \pi 2 = 1$ Option D: $\pi 0 + \pi 1 + \pi 2 = 1$ Option D: $\pi 0 + \pi 1 + \pi 2 = 0$ Q22. Chapman Kolmogorov Equation for a discrete Markov chain is Option A: $P^{mn}(i,j) = \sum_{k} P^{m}(i,k) P^{n}(k,j)$ K Option B: $P^{mn}(i,j) = \sum_{k} P^{m}(i,k) P^{n}(k,j)$ N Option C: $N^{mn}(i,j) = \sum_{k} P^{m}(i,k) P^{n}(k,j)$ N Option D: $N^{mn}(i,j) = \sum_{k} P^{m}(i,k) P^{n}(k,j)$ N Option D: $N^{mn}(i,j) = \sum_{k} P^{m}(i,k) P^{n}(k,j) P^{n}(k,j)$ N Option D: $N^{mn}(i,j) = \sum_{k} P^{m}(i,k) P^{n}(k,j) P^$	Орион В.	W 55 process
Option A: $\pi 0 + \pi 1 + \pi 2 = 1$ Option B: $\pi 0 + \pi 1 + \pi 2 = 1$ Option D: $\pi 0 + \pi 1 + \pi 2 = 1$ Option D: $\pi 0 + \pi 1 + \pi 2 = 1$ Option D: $\pi 0 + \pi 1 + \pi 2 = 0$ Q22. Chapman Kolmogorov Equation for a discrete Markov chain is Option A: $P^{mn}(i,j) = \sum_{k} P^{m}(i,k) P^{n}(k,j)$ K Option B: $P^{m+n}(i,j) = \sum_{k} P^{m}(i,k) P^{n}(k,j)$ K Option C: $P^{m+n}(i,j) = \sum_{k} P^{m}(i,k) P^{n}(k,j)$ K Option D: $P^{m+n}(i,j) = \sum_{k} P^{m}(i,k) P^{n}(k,j) = -1$ K Q23. Consider a Markov chain with 2 state transition probability matrix as $P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix}$ then find stationary probabilities of the chain are Option A: $\Pi = (2/3, 2/3)$ Option B: $\Pi = (1/3, 1/3)$ Option C: $\Pi = (2/3, 1/3)$ Option D: $\Pi = (1/4, 1/3)$ Q24. A mathematical approach of analysing the congestions and delays of waiting in line is called Option A: Gaussian Process Option B: Oucuing Theory Option C: Markov Chain Option D: Poisson process Q25. 11A medical representative visits only three cities A, B, C but he never visits the same city on successive days. If he visits city A today then he visits city B tomorrow without fail. However if he visits either city B or C today , then he is twice as likely to visit city A as the other city. In what proportion does he visit the cities A, B, C in steady state. Option B: 50% , 25% , 25%	021	Probability distribution of chain is $\pi = [\pi 0, \pi 1, \pi 2]$ then
Option B: $\pi 0 + \pi 1 + \pi 2 = 2$ Option C: $\pi 0 + \pi 1 + \pi 2 = 1$ Option D: $\pi 0 + \pi 1 + \pi 2 = 0$ Q22. Chapman Kolmogorov Equation for a discrete Markov chain is Option A: $P^{mn}(i,j) = \sum_{i} P^{m}(i,k) P^{n}(k,j)$ Option B: $P^{m+n}(i,j) = \sum_{i} P^{m}(i,k) P^{n}(k,j)$ Option C: $P^{m+n}(i,j) = \sum_{i} P^{m}(i,k) P^{n}(k,j)$ Option D: $P^{m+n}(i,j) = \sum_{i} P^{m}(i,k) P^{n}(k,j)$ Option D: $P^{m+n}(i,j) = \sum_{i} P^{m}(i,k) P^{n}(k,j) = -1$ Q23. Consider a Markov chain with 2 state transition probability matrix as $P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix}$ then find stationary probabilities of the chain are Option A: $P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix}$ Option B: $P = \begin{bmatrix} 1/3 & 1/3 \\ 1/4 & 1/3 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix}$ Q24. A mathematical approach of analysing the congestions and delays of waiting in line is called Option A: $P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/4 \end{bmatrix}$ Option B: $P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix}$ Q24. A mathematical approach of analysing the congestions and delays of waiting in line is called Option B: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/3 \end{bmatrix}$ Q25. $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/3 \end{bmatrix}$ Q26. $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/3 \end{bmatrix}$ Option C: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/3 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option B: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option C: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$		
Option C: $\pi 0 + \pi 1 + \pi 2 = 1$ Option D: $\pi 0 + \pi 1 + \pi 2 = 0$ Q22. Chapman Kolmogorov Equation for a discrete Markov chain is Option A: K Option B: K Option B: K Option C: K Option D: K		
Option D: $\pi 0 + \pi 1 + \pi 2 = 0$ Q22. Chapman Kolmogorov Equation for a discrete Markov chain is Option A: $P^{mn}(i,j) = \sum_{i} P^{m}(i,k) P^{n}(k,j)$ K Option B: $P^{m+n}(i,j) = \sum_{i} P^{m}(i,k) P^{n}(k,j)$ Option C: $P^{m+n}(i,j) = \sum_{i} P^{m}(i,k) P^{n}(k,j)$ Option D: $P^{m+n}(i,j) = \sum_{i} P^{m}(i,k) P^{n}(k,j) = -1$ Q23. Consider a Markov chain with 2 state transition probability matrix as $P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix}$ then find stationary probabilities of the chain are Option A: $\Pi = (2/3, 2/3)$ Option B: $\Pi = (1/3, 1/3)$ Option D: $\Pi = (1/4, 1/3)$ Q24. A mathematical approach of analysing the congestions and delays of waiting in line is called Option A: Gaussian Process Option B: Queuing Theory Option C: Markov Chain Option D: Poisson process Q25. 11A medical representative visits only three cities A, B, C but he never visits the same city on successive days. If he visits city A today then he visits city B tomorrow without fail. However if he visits either city B or C today, then he is twice as likely to visit city A as the other city. In what proportion does he visit the cities A, B, C in steady state. Option A: $40\%, 45\%, 15\%$ Option B: $50\%, 25\%, 25\%$		
Q22. Chapman Kolmogorov Equation for a discrete Markov chain is Option A: $P^{mn}(i,j) = \sum P^{m}(i,k) P^{n}(k,j)$ K Option B: $P^{m+n}(i,j) = \sum P^{m}(i,k) P^{n}(k,j)$ Option C: $P^{m+n}(i,j) = \sum P^{m}(i,k) P^{n}(k,j)$ Option D: $P^{m+n}(i,j) = \sum P^{m}(i,k) P^{n}(k,j)$ Q23. $P^{m+n}(i,j) = \sum P^{m}(i,k) P^{n}(k,j) = -1$ Q23. $P^{m+n}(i,j) = \sum P^{m}(i,k) P^{n}(k,j) = -1$ Option A: $P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix}$ then find stationary probabilities of the chain are Option B: $P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix}$ then find stationary probabilities of the chain are Option D: $P = \begin{bmatrix} 1 & 1/3 & 1/3 \\ 1/2 & 1/3 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1 & 1/3 & 1/3 \\ 1/3 & 1/3 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1 & 1/3 & 1/3 \\ 1/3 & 1/3 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1 & 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix}$ Option A: $P = \begin{bmatrix} 1 & 1/4 & 1/3 \\ 1/4 & 1/4 \end{bmatrix}$ Option A: $P = \begin{bmatrix} 1 & 1/4 & 1/3 \\ 1/4 & 1/4 \end{bmatrix}$ Option B: $P = \begin{bmatrix} 1 & 1/4 & 1/3 \\ 1/4 & 1/4 \end{bmatrix}$ Option C: $P = \begin{bmatrix} 1 & 1/4 & 1/3 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option D: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option A: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option B: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option B: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option B: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option B: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option B: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option B: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option B: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option B: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option B: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option B: $P = \begin{bmatrix} 1 & 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$ Option B:		
Option A: $P^{mn}(i,j) = \sum_{K} P^{m}(i,k) P^{n}(k,j)$ Option B: $P^{m+n}(i,j) = \sum_{K} P^{m}(i,k) P^{n}(k,j)$ Option C: $P^{m+n}(i,j) = \sum_{K} P^{m}(i,k) P^{n}(k,j)$ Option D: $P^{m+n}(i,j) = \sum_{K} P^{m}(i,k) P^{n}(k,j)$ Option D: $P^{m+n}(i,j) = \sum_{K} P^{m}(i,k) P^{n}(k,j) = -1$ Q23. $Consider a Markov chain with 2 state transition probability matrix as P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix} then find stationary probabilities of the chain are P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix} Option A: P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix} Option B: P = \begin{bmatrix} 1/3 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option C: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option A: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option A: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option B: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option B: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option C: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4$	Option D.	100 + 11 + 12 = 0
Option A: $P^{mn}(i,j) = \sum_{K} P^{m}(i,k) P^{n}(k,j)$ Option B: $P^{m+n}(i,j) = \sum_{K} P^{m}(i,k) P^{n}(k,j)$ Option C: $P^{m+n}(i,j) = \sum_{K} P^{m}(i,k) P^{n}(k,j)$ Option D: $P^{m+n}(i,j) = \sum_{K} P^{m}(i,k) P^{n}(k,j)$ Option D: $P^{m+n}(i,j) = \sum_{K} P^{m}(i,k) P^{n}(k,j) = -1$ Q23. $Consider a Markov chain with 2 state transition probability matrix as P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix} then find stationary probabilities of the chain are P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix} Option A: P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix} Option B: P = \begin{bmatrix} 1/3 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option C: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option A: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option A: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option B: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option B: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option C: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/3 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4 & 1/3 \\ 1/4 & 1/3 \end{bmatrix} Option D: P = \begin{bmatrix} 1/4$	022	Channel Walness and Farsting for a discourt Madage shair in
Option B: $P^{m+n}(i,j) = \sum_{K} P^{m}(i,k) P^{n}(k,j)$ Option C: $P^{m+n}(i,j) = \sum_{K} P^{n}(i,k) P^{n}(k,j)$ Option D: $P^{m+n}(i,j) = \sum_{K} P^{n}(i,k) P^{n}(k,j)$ Option D: $P^{m+n}(i,j) = \sum_{K} P^{m}(i,k) P^{n}(k,j) = -1$ $Q23. Consider a Markov chain with 2 state transition probability matrix as P = \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix} then find stationary probabilities of the chain are Option A: \Pi = (2/3, 2/3) Option B: \Pi = (1/3, 1/3) Option C: \Pi = (2/3, 1/3) Option D: \Pi = (1/4, 1/3) Q24. A \text{ mathematical approach of analysing the congestions and delays of waiting in line is called} Option A: Gaussian Process Option B: Queuing Theory Option C: Markov Chain Option D: Poisson process Q25. 11A medical representative visits only three cities A, B, C but he never visits the same city on successive days. If he visits city A today then he visits city B tomorrow without fail. However if he visits either city B or C today, then he is twice as likely to visit city A as the other city. In what proportion does he visit the cities A, B, C in steady state. Option A: 40\%, 45\%, 15\% Option B: 50\%, 25\%, 25\%$		
Option C: $P^{m+n} (i,j) = \sum_{K} P^{n} (i,k) P^{n} (k,j)$ Option D: $P^{m+n} (i,j) = \sum_{K} P^{m} (i,k) P^{n} (k,j) = -1$ Q23. $Consider a Markov chain with 2 state transition probability matrix as P = \begin{vmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{vmatrix} then find stationary probabilities of the chain are Option A: \Pi = (2/3, 2/3) Option B: \Pi = (1/3, 1/3) Option C: \Pi = (2/3, 1/3) Option D: \Pi = (1/4, 1/3) Q24. A mathematical approach of analysing the congestions and delays of waiting in line is called Option A: Gaussian Process Option B: Queuing Theory Option C: Markov Chain Option D: Poisson process Q25. 11A medical representative visits only three cities A, B, C but he never visits the same city on successive days. If he visits city A today then he visits city B tomorrow without fail. However if he visits either city B or C today, then he is twice as likely to visit city A as the other city. In what proportion does he visit the cities A, B, C in steady state. Option A: 40\%, 45\%, 15\% Option B: 50\%, 25\%, 25\%, 25\%$	Option A:	
Q23. Consider a Markov chain with 2 state transition probability matrix as P= 3/4 1/4 1/2 1/2 then find stationary probabilities of the chain are Option A: Π = (2/3 , 2/3) Option B: Π = (1/3 , 1/3) Option C: Π = (2/3 , 1/3) Option D: Π = (1/4 , 1/3) Q24. A mathematical approach of analysing the congestions and delays of waiting in line is called Option A: Gaussian Process Option B: Queuing Theory Option C: Markov Chain Option D: Poisson process Q25. 11A medical representative visits only three cities A, B, C but he never visits the same city on successive days. If he visits city A today then he visits city B tomorrow without fail. However if he visits either city B or C today ,then he is twice as likely to visit city A as the other city. In what proportion does he visit the cities A, B, C in steady state. Option A: 40%, 45%, 15% Option B: 50%, 25%, 25%	_	$P^{m+n}(i,j) = \sum_{K} P^{m}(i,k) P^{n}(k,j)$
Q23. Consider a Markov chain with 2 state transition probability matrix as P= 3/4 1/4 1/2 1/2 then find stationary probabilities of the chain are Option A: Π = (2/3 , 2/3) Option B: Π = (1/3 , 1/3) Option C: Π = (2/3 , 1/3) Option D: Π = (1/4 , 1/3) Q24. A mathematical approach of analysing the congestions and delays of waiting in line is called Option A: Gaussian Process Option B: Queuing Theory Option C: Markov Chain Option D: Poisson process Q25. 11A medical representative visits only three cities A, B, C but he never visits the same city on successive days. If he visits city A today then he visits city B tomorrow without fail. However if he visits either city B or C today ,then he is twice as likely to visit city A as the other city. In what proportion does he visit the cities A, B, C in steady state. Option A: 40%, 45%, 15% Option B: 50%, 25%, 25%	_	$P^{m+n}(i,j) = \sum_{K} P^{n}(i,k) P^{n}(k,j)$
P= 3/4 1/4	Option D:	$P^{m+n}(i,j) = \sum_{K} P^{m}(i,k) P^{n}(k,j) = -1$
P= 3/4 1/4	022	
Option A: Π = (2/3, 2/3) Option B: Π = (1/3, 1/3) Option C: Π = (2/3, 1/3) Option D: Π = (1/4, 1/3) Q24. A mathematical approach of analysing the congestions and delays of waiting in line is called Option A: Gaussian Process Option B: Queuing Theory Option C: Markov Chain Option D: Poisson process Q25. 11A medical representative visits only three cities A, B, C but he never visits the same city on successive days. If he visits city A today then he visits city B tomorrow without fail. However if he visits either city B or C today ,then he is twice as likely to visit city A as the other city.In what proportion does he visit the cities A, B, C in steady state. Option A: 40%, 45%, 15% Option B: 50%, 25%, 25%	Q23.	
 Option B: Π = (1/3 , 1/3) Option C: Π = (2/3 , 1/3) Option D: Π = (1/4 , 1/3) Q24. A mathematical approach of analysing the congestions and delays of waiting in line is called Option A: Gaussian Process Option B: Queuing Theory Option C: Markov Chain Option D: Poisson process Q25. 11A medical representative visits only three cities A, B, C but he never visits the same city on successive days. If he visits city A today then he visits city B tomorrow without fail. However if he visits either city B or C today ,then he is twice as likely to visit city A as the other city. In what proportion does he visit the cities A,B,C in steady state. Option A: 40%, 45%, 15% Option B: 50%, 25%, 25% 		then find stationary probabilities of the chain are
 Option C: Π = (2/3, 1/3) Option D: Π = (1/4, 1/3) Q24. A mathematical approach of analysing the congestions and delays of waiting in line is called Option A: Gaussian Process Option B: Queuing Theory Option C: Markov Chain Option D: Poisson process Q25. 11A medical representative visits only three cities A, B, C but he never visits the same city on successive days. If he visits city A today then he visits city B tomorrow without fail. However if he visits either city B or C today ,then he is twice as likely to visit city A as the other city. In what proportion does he visit the cities A,B,C in steady state. Option A: 40%, 45%, 15% Option B: 50%, 25%, 25% 	Option A:	
Option D: II = (1/4, 1/3) Q24. A mathematical approach of analysing the congestions and delays of waiting in line is called Option A: Gaussian Process Option B: Queuing Theory Option C: Markov Chain Option D: Poisson process Q25. 11A medical representative visits only three cities A, B, C but he never visits the same city on successive days. If he visits city A today then he visits city B tomorrow without fail. However if he visits either city B or C today ,then he is twice as likely to visit city A as the other city. In what proportion does he visit the cities A,B,C in steady state. Option A: 40%, 45%, 15% Option B: 50%, 25%, 25%	Option B:	$\Pi = (1/3, 1/3)$
Q24. A mathematical approach of analysing the congestions and delays of waiting in line is called Option A: Gaussian Process Option B: Queuing Theory Option C: Markov Chain Option D: Poisson process Q25. 11A medical representative visits only three cities A, B, C but he never visits the same city on successive days. If he visits city A today then he visits city B tomorrow without fail. However if he visits either city B or C today ,then he is twice as likely to visit city A as the other city. In what proportion does he visit the cities A,B,C in steady state. Option A: 40%, 45%, 15% Option B: 50%, 25%, 25%	Option C:	$\Pi = (2/3, 1/3)$
Iline is called Option A: Gaussian Process Option B: Queuing Theory Option C: Markov Chain Option D: Poisson process Q25.	Option D:	$\Pi = (1/4, 1/3)$
Iline is called Option A: Gaussian Process Option B: Queuing Theory Option C: Markov Chain Option D: Poisson process Q25.	-	
Option B: Queuing Theory Option C: Markov Chain Option D: Poisson process Q25. 11A medical representative visits only three cities A, B, C but he never visits the same city on successive days. If he visits city A today then he visits city B tomorrow without fail. However if he visits either city B or C today ,then he is twice as likely to visit city A as the other city. In what proportion does he visit the cities A,B,C in steady state. Option A: 40%, 45%, 15% Option B: 50%, 25%, 25%	Q24.	
Option C: Markov Chain Option D: Poisson process Q25. 11A medical representative visits only three cities A, B, C but he never visits the same city on successive days. If he visits city A today then he visits city B tomorrow without fail. However if he visits either city B or C today ,then he is twice as likely to visit city A as the other city. In what proportion does he visit the cities A,B,C in steady state. Option A: 40%, 45%, 15% Option B: 50%, 25%, 25%	Option A:	Gaussian Process
Option C: Markov Chain Option D: Poisson process Q25. 11A medical representative visits only three cities A, B, C but he never visits the same city on successive days. If he visits city A today then he visits city B tomorrow without fail. However if he visits either city B or C today ,then he is twice as likely to visit city A as the other city. In what proportion does he visit the cities A,B,C in steady state. Option A: 40%, 45%, 15% Option B: 50%, 25%, 25%	Option B:	Queuing Theory
Option D: Poisson process Q25.	Option C:	
visits the same city on successive days. If he visits city A today then he visits city B tomorrow without fail. However if he visits either city B or C today ,then he is twice as likely to visit city A as the other city. In what proportion does he visit the cities A,B,C in steady state. Option A: 40%, 45%, 15% Option B: 50%, 25%, 25%		Poisson process
visits the same city on successive days. If he visits city A today then he visits city B tomorrow without fail. However if he visits either city B or C today ,then he is twice as likely to visit city A as the other city. In what proportion does he visit the cities A,B,C in steady state. Option A: 40%, 45%, 15% Option B: 50%, 25%, 25%		
visits the same city on successive days. If he visits city A today then he visits city B tomorrow without fail. However if he visits either city B or C today ,then he is twice as likely to visit city A as the other city. In what proportion does he visit the cities A,B,C in steady state. Option A: 40%, 45%, 15% Option B: 50%, 25%, 25%	Q25.	11A medical representative visits only three cities A, B, C but he never
today ,then he is twice as likely to visit city A as the other city. In what proportion does he visit the cities A,B,C in steady state. Option A: 40%, 45%, 15% Option B: 50%, 25%, 25%		
proportion does he visit the cities A,B,C in steady state. Option A: 40%, 45%, 15% Option B: 50%, 25%, 25%		
Option A: 40%, 45%, 15% Option B: 50%, 25%, 25%		today, then he is twice as likely to visit city A as the other city. In what
Option B: 50%, 25%, 25%		proportion does he visit the cities A,B,C in steady state.
Option B: 50%, 25%, 25%	Option A:	40%, 45%, 15%
Opuon C. 43%, 43%, 10%	Option C:	45%, 45%, 10%
Option D: 35%, 40%, 25%		35%, 40%, 25%

Program: Electronics & Telecommunication Engineering

Curriculum Scheme: Rev2012 Examination: Third Year Semester V

Course Code: ETC503 and Course Name: Random Signal Analysis

Time: 1 hour Max. Marks: 50

Question Number	Correct Option
Q1.	В
Q2.	A
Q3.	A
Q4	В
Q5	C
Q6	C
Q7	D
Q8.	A
Q9.	C
Q10.	D
Q11.	A
Q12.	В
Q13.	С
Q14.	A
Q15.	D
Q16.	В
Q17.	A
Q18.	C
Q19.	A
Q20.	D
Q21.	С
Q22.	В
Q23.	С
Q24.	В
Q25.	A

Program: BE Electronics & Telecommunication Engineering

Curriculum Scheme: Revised 2012

Examination: Third Year Semester V

Course Code: ETC504 and Course Name: RF Modeling and Antennas

Time: 1 hour	Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	What are the elements considered while representing the resistor at high frequency?	
Option A:	Resistance, inductance of leads and parasitic capacitance across resistor	
Option B:	Only resistance	
Option C:	Inductance and Capacitance in parallel	
Option D:	Resistor breaks down at high frequency	
Q2.	The of the wire is specified in terms of AWG (American Wire Gauge) system	
Option A:	Length	
Option B:	Diameter	
Option C:	Resistance	
Option D:	Conductance	
Q3.	What is the need of m-derived filters in filter designing?	
Option A:	To provide undistorted filtering	
Option B:	It provides slow attenuation rate	
Option C:	It provides sharp attenuation at cut off frequency	
Option D:	For network matching	
Q4.	With respect to K-β diagram, K refers to and β refers to	
Option A:	Propagation Constant, Propagation constant of unloaded line	
Option B:	Attenuation Constant, Propagation constant	
Option C:	Propagation constant, Attenuation constant	
Option D:	Propagation constant of unloaded line, Attenuation constant	
Q5.	Using Richard's Transformation, Inductor can be replaced by and Capacitor can be replaced by at high frequencies	
Option A:	Open circuited stub, Short circuited stub	
Option B:	Short circuit stub, Open circuit stub	
Option C:	Open circuited stub, Open circuited stub	
Option D:	Short circuited stub, Short circuited stub	
Q6.	What is a filter?	
Option A:	Frequency selective circuit	

Option B:	Frequency modulation circuit	
Option C:	Frequency damping circuit	
Option D:	Amplitude damping circuit	
Q7.	Butterworth filter design using insertion loss method is also known as	
Option A:	Maximally high	
Option B:	Maximally flat	
Option C:	Chebyshev	
Option D:	Minimally flat	
Q8.	Select the appropriate sequence for designing composite filters	
Option A:	Constant K filterMatching sectionm-derived filters	
Option B:	Matching sectionconstant k filterm derived filtermatching section	
Option C:	Matching sectionlow pass filter	
Option D:	m-derived filterconstant k filterm-derived filter	
Q9.	Transmitting antenna converts into	
Option A:	Electrical signal, Electromagnetic waves	
Option B:	Electromagnetic waves, Electrical signal	
Option C:	Analog signal, Digital signal	
Option D:	Digital signal, analog signal	
Q10.	Which of the equations is correct if directivity to be calculated in terms of	
	effective aperture?	
Option A:	$D = l_e^2 z \pi / \gamma$	
Option B:	$D = \frac{4i d^2 e}{\tilde{J}^2}$	
Option C:	$D = \frac{4\pi Ae}{j2}$ $D = \frac{4\pi Ae}{2R}$ $D = Ae^2 z\pi$	
Option D:	$D = A_e^2 z \pi$	
Q11.	Angular width in degrees measured on major lobe of radiation pattern between	
	point where radiation pattern has fallen to half of its maximum, is called as	
Option A:	First null beam width	
Option B:	Front null beam width	
Option C:	Half power beam width	
Option D:	Half null beam width	
012	In antonna equivalent circuit antonna impedance is given by 7 = /B + B \ + i \	
Q12.	In antenna equivalent circuit antenna impedance is given by $Z_A = (R_L + R_R) + j X_A$	
	Where R _R = ?	
Option A:	R _R = Ratio resistance	
Option B:	R _R = Radiation resistance	
Option C:	R _R = Relative resistance	
Option D:	R _R = Relation resistance	
- 1- 3-0		
<u> </u>	1	

Q13.	If P _T & P _R are power of transmitter & receiver respectively
	G _T & G _R are gain of transmitter & receiver respectively
	R is distance between transmitter & receiver
	λ is the wavelength then FRIIS transmission equation given by
Option A:	$P_R = P_T^* G_T^* G_R (\lambda / 4\pi^* R)^2$
Option B:	$P_R = P_T^* G_T^* G_R$
Option C:	$P_T = P_R * G_T * G_R$
Option D:	$P_R = P_T^* G_T^* G_R (4\pi^* R / \lambda)^2$
Q14.	What is the boundary for a reactive near field?
Option A:	$R < 0.62\sqrt{\overline{D^3}/\lambda}$
Option B:	$R > 0.62 \mid \frac{L^3}{\lambda}$
Option C:	R < 0.63
Option D:	R > 0.63
Q15.	For infinitesimal dipole antenna, length of the dipole is
Option A:	Ι>>λ
Option B:	I<<\lambda
Option C:	Ι=λ
Option D:	I = \(\lambda/2\)
Q16.	Monopole antenna can be defined as
Option A:	A loop conductor feed with external source
Option B:	A dipole conductor ,feed at center
Option C:	Straight rod conductor perpendicular to conductive surface
Option D:	Number of antenna elements in array
Q17.	Identify, which of the below antenna types is not a wire antenna?
Option A:	Monopole
Option B:	Helix
Option C:	Loop
Option D:	Parabolic reflector
орион В.	T drabone reflector
Q18.	The antenna over a perfect ground is studied very easily using theory
Option A:	Image
Option B:	Mode
Option C:	Ray
Option D:	Quantum
Q19.	Where is the feed point for the folded dipole antenna located?
Option A:	At the top of an antenna
•	At the bottom of an antenna At the bottom of an antenna
Option B: Option C:	At the center of one conductor
Option C:	At the tenter of one conductor

Option D:	No need of external feed for folded dipole
Q20.	High directivity required in RADAR communication is satisfied using type
	of antennas
Option A:	Wide band antennas
Option B:	Antenna arrays
Option C:	Slot antennas
Option D:	Patch antennas
Q21.	What is the advantage of implementing an antenna array?
Option A:	Wide radiation and low directivity
Option B:	High gain and high directivity
Option C:	Low cost and low gain
Option D:	Large dimension of antenna requires more space for implementation
Q22.	Cassegrain feed parabolic antenna design has reflectors
Option A:	1
Option B:	2
Option C:	3
Option D:	4
Q23.	Pyramidal horn is designed by flaring
Option A:	Only E-Arm
Option B:	Only H-Arm
Option C:	E & H Arm equally
Option D:	E & H Arm unequally
Q24.	Which one is not the form of polarization of an antenna?
Option A:	Linearly polarized
Option B:	Circularly polarized
Option C:	Rectangularly polarized
Option D:	Elliptically polarized
Q25.	What are the advantages of using microstrip antennas?
Option A:	Easy to design
Option B:	Highly directional
Option C:	Narrow frequency bandwidth
Option D:	Light weight and low cost

Program: BE Electronics and Telecommunication Engineering

Curriculum Scheme: Revised 2012

Examination: Third Year Semester V

Course Code: ETC504 and Course Name: RF Modeling and Antennas

Time: 1 hour Max. Marks: 50

Question	Correct Option
Q1.	А
Q2.	В
Q3.	С
Q4	А
Q5	В
Q6	А
Q7	В
Q8.	В
Q9.	А
Q10.	В
Q11.	С
Q12.	В
Q13.	А
Q14.	А
Q15.	В
Q16.	С
Q17.	D

Q18.	А
Q19.	С
Q20.	В
Q21.	В
Q22.	В
Q23.	С
Q24.	С
Q25.	D

Program: BE Electronics & Telecommunication Engineering Curriculum Scheme: Revised 2012

Examination: Third Year Semester V

Course Code: ETC505 and Course Name: INTEGRATED CIRCUITS

Time: 1hour Max. Marks: 50

Note to the students: - All Questions are compulsory and carry equal marks .

Q1.	The input stage of an Op-amp is usually a
Option A:	differential amplifier
Option B:	class B push-pull amplifier
Option C:	CE amplifier
Option D:	swamped amplifier
Q2.	The input offset current is equals to
Option A:	difference between two base currents
Option B:	average of two base currents
Option C:	collector current divided by current gain
Option D:	base current divided by current gain
Q3.	Which factor determines the output voltage of an op-amp?
Option A:	Positive saturation voltage
Option B:	Negative saturation voltage
Option C:	Both positive and negative saturation voltage
Option D:	Supply voltage
Q4.	If an op-amp has one input grounded and the other input has a signal feed to it, then it is operating as what?
Option A:	Common-mode
Option B:	Single-ended
Option C:	Double-ended
Option D:	Noninverting mode

Q5.	Which is not the ideal characteristic of an op-amp?
Option A:	Input Resistance (Ri=∞)
Option B:	Output impedance $(R_0=0)$
Option C:	Bandwidth (BW=0)
Option D:	Open loop voltage gain $(A_{OL}=\infty)$
Q6.	For a phase shift oscillator, the three RC cascaded networks in the feedback circuit have values of their resistances R = 3.3 k Ω and capacitances C = 0.1 μ F,
Option A:	Its frequency of oscillation is ≈ 1 kHz
Option B:	Its frequency of oscillation is ≈ 3.030 kHz
Option C:	Its frequency of oscillation is ≈ 3.3 kHz
Option D:	Its frequency of oscillation is ≈ 200 Hz
Q7.	The gain in a current amplifier is the ratio of
Option A:	Output voltage to Input current
Option B:	Output current to Input voltage
Option C:	Output current to Input current
Option D:	Output voltage to Input voltage
Q8.	The total phase shift of the loop gain in a sine wave oscillator is
Option A:	90°
Option B:	180°
Option C:	270°
Option D:	360°
Q9.	The output voltage of a frequency to voltage converter is related to the input frequency by the equation
Option A:	$V_O = (Vref \times Cref \times Rint) \times Fin$
Option B:	$V_O = (Vref / (Cref \times Rint)) \times Fin$

Option C:	$V_O = ((Vref \times Cref) / Rint) \times Fin$	
Option D:	$V_O = ((Vref \times Rint) / Cref) \times Fin$	
Q10.	Find the input voltage of an ideal op-amp. It's one of the inputs and output	
Option A:	voltages are 2 V and 12 V. (Gain=3) 8 V	
Option B:	4 V	
Option C:	- 4 V	
Option D:	- 2 V	
011		
Q11.	Which circuit converts irregularly shaped waveform to regular shaped waveforms?	
Option A:	Schmitt trigger	
Option B:	Voltage limiter	
Option C:	Regulator	
Option D:	Peak detector	
Q12.	Zero crossing detectors is also called as	
Option A:	Square to sine wave generator	
Option B:	Sine to square wave generator	
Option C:	Sine to triangular wave generator	
Option D:	Sine to ramp wave generator	
012	Ripple counters are also called	
Q13.		
Option A:	SSI counters	
Option B:	Asynchronous counters	
Option C:	Synchronous counters	
Option D:	VLSI counters	
Q14.	Determine the expression for time period of a square wave generator	
Option A:	T= 2RC $\ln \times [(R_1 + R_2) / (R_2)]$	
Орион А.	1 - 2KC m^[(K[+ K2) / (K2)]	

Option B:	$T = 2RC \ln \times [(2R_1 + R_2) / (R_2)].$		
Option C:	$T = 2RC \ln \times [(R_1 + 2R_2) / (R_2)].$		
Option D:	$T = 2RC \ln \times [(R_1 + R_2) / (2 R_2)]$		
Q15.	In IC 555 external AC voltage can be applied to this pin to obtain Pulse width modulation. Which pin is that?		
Option A:	Reset pin 4		
Option B:	Control pin 5		
Option C:	Threshold pin 6		
Option D:	Discharge pin 7		
Q16.	IC AD 534 is		
Option A:	trimmed one quadrant multiplier IC		
Option B:	trimmed two quadrant multiplier IC		
_			
Option C:	trimmed three quadrant multiplier IC		
Option D:	trimmed four quadrant multiplier IC		
Q17.	The reference voltage of lower and upper comparator used in functional block diagram of IC 555 is		
Option A:	1/3 V _{CC} and 2/3 V _{CC}		
Option B:	1/3 V _{CC} and 1/4 V _{CC}		
Option C:	2/3 V _{CC} and 1/4 V _{CC}		
Option D:	1/5 V _{CC} and 2/5 V _{CC}		
Q18.	Which operations cannot be performed by ALU 74181?		
Option A:	Addition		
Option B:	Multiplication		
Option C:	Subtraction		
Option D:	Logical Shift		

Q19.	What is the dropout voltage in a three terminal IC regulator?	
Option A:	$ Vin \ge Vo + 2v$	
Option B:	$ Vin \leq Vo -2v$	
Option C:	V in = V o	
Option D:	Vin ≤ Vo	
020		
Q20.	In the sample and hold circuit, the period during which the voltage across capacitor is equal to input voltage	
Option A:	Sample period	
Option B:	Hold period	
Option C:	Delay period	
Option D:	Charging period	
Q21.	All of the following are parts of a basic voltage regulator except	
Option A:	Control element	
Option B:	Sampling circuit	
Option C:	Voltage follower	
Option D:	Error detector	
Q22.	The off time T_{off} for an astable multivibrator using IC 555 with R_A = 25 kilo ohms , R_B = 33 kilo ohms and C=0.5 micro farads is	
Option A:	13.4 ms	
Option B:	11.43 ms	
Option C:	10.33 ms	
Option D:	14.5 ms	
Q23.	The basic difference between a series regulator and shunt regulator is	
Option A:	The amount of current that can be handled	
Option B:	The position of the control element	
Option C:	The type of sample circuit	

Option D:	The type of error detector	
Q24.	What is the voltage level for logic '1' in TTL IC?	
Option A:	5 V	
Option B:	3.3 V	
Option C:	15 V	
Option D:	12 V	
Q25.	What is the function of 74191?	
Option A:	Asynchronous reversible up/down counter	
Option B:	Synchronous reversible up/down counter	
Option C:	Synchronous reversible counter	
Option D:	Asynchronous up/down counter	

Program: BE Electronics & Telecommunication Engineering Curriculum Scheme: Revised2012

Examination: Third Year Semester V

Course Code: ETC505 and Course Name: INTEGRATED CIRCUITS

Time: 1hour Max. Marks: 50

Question	Correct Option
Q1.	Option A
Q2.	Option A
Q3	Option C
Q4	Option B
Q5.	Option C
Q6.	Option D
Q7	Option C
Q8.	Option D
Q9.	Option A
Q10	Option D
Q11.	Option A
Q12.	Option B
Q13.	Option B
Q14.	Option B
Q15.	Option B
Q16.	Option D
Q17.	Option A
Q18.	Option B
Q19.	Option A
Q20.	Option A
Q21.	Option C
Q22.	Option B
Q23.	Option B
Q24.	Option A
Q25.	Option B