[Time: Three Hours]

Q.P. Code: 37932

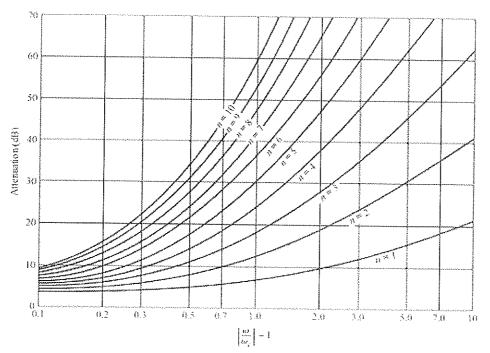
[Marks:80]

	P! N.B:	 lease check whether you have got the right question paper. Question.No.1 is compulsory. Answer any three questions out of remaining five. Assume suitable data wherever necessary. 	
Q.1	a. b. c. d. e.	Attempt any four: Explain function of T0 and T1 pins of 8051. Explain PSW of 8051 in detail. Explain Memory organization in 8051 microcontroller. Explain the concept of pipeline of ARM 7. Compare AJMP, SJMP and LJMP instruction of 8051.	20
Q.2	a. b.	Explain interrupts in 8051 microcontroller. Explain PORT 3 structure of 8051.	1(1(
Q.3	a. b.	Explain interfacing of ADC 0808 with 8051. List and explain the different core extension used with ARM processor.	1(1(
Q.4	a. b.	Design 8051 based system with following specifications i) 8051 working at 10MHz. ii) 4 KB External Program memory using 2 KB chips iii) 8 KB External Data memory using 4 KB chips Explain addressing modes of ARM with examples.	10
Q.5	a. b.	Explain stack operation in 8051 with examples. Explain IR based wireless communication system.	1(1(
Q.6	a. b. c. d.	Explain current program status registers of ARM7 Explain serial communication in 8051 Explain "Digital camera as an embedded system" What are the challenges in optimizing embedded system design matrices?	20

	Duration :3hrs Max.Marks:80	
I.B.	(1) Question No. 1 is compulsory.	
	(2)Attempt any three questions out of remaining five.	76, 60 20, 00
	(3) Figures to the right indicate full marks.	32,77
	(4)Assume suitable data if required and mention the same in answer sheet	0,40
1.	Solve any four	2(
	(a) Explain practical diode detector.	<i>\$</i> `
	(b) Define sensitivity, image frequency rejection and fidelity for radio receiver.	
	(c) What is quantization? Explain types of quantization.	
	(d) Why IF is selected as 455 KHz in AM?	
	(e) List the applications of pulse communication.	
2.	(a) Explain concept of AM Wave with related equations and waveforms.	10
	(b) Draw the block diagram of phase cancellation SSB generator and explain how carrier and	10
	unwanted sidebands are suppressed?	
3.	(a) Explain the operation of Foster seeley discriminator with the help of circuit diagram and phasor	10
	diagram.	
	(b) Explain the principle and generation of indirect method of FM generation.	10
4.	(a) What are the drawbacks of delta modulation? Explain the method to overcome these drawbacks.	10
	(b) With the help of suitable waveforms explain generation and detection of PPM.	10
5.	(a) Explain Super heterodyne radio receiver in detail with block diagram.	10
	(b) Explain VSB Transmission in detail with its application.	10
6.	Write short note on(any four)	20
	(a) Compare FM and PM	
	(b) FM noise triangle	
Š	(c) Noise figure and noise factor	
	(d) Frequency division Multiplexing (FDM)	
6,60	(e) Pre emphasis and de-emphasis circuits	

56842 Page **1** of **1**

Paper / Subject Code: 30603 / R F MODELING AND ANTENNAS


QP CODE: 22616 (3 Hours) Marks: 80

N.B	 (1) Question No. 1 is compulsory. (2) Solve any three questions from the remaining five. (3) Figures to the right indicate full marks (4) Assume suitable data if necessary and mention the same in answer sheet. 						
Q1 (a)	Explain the Hazards of Electromagnetic Radiation.	20					
(b)	Explain the radiation mechanism of antenna with single wire system.	20					
(c)	Explain the use of Richard transformation and Kurodas Identity in RF filter design						
(d)	Derive an expression for array of two isotropic sources with same amplitude and in phase.						
Q2 (a)	Explain the RF behavior of resistor, capacitor and inductor.	ST 10					
(b)	Discuss the design procedure for filter using image parameter method.	10					
Q3 (a)	Design a maximally flat LPF with a cut off frequency of 2 GHz. The generator and load impedance is 50 Ω with 15 dB insertion loss at 3GHz with discrete LC components.	10					
(b)	Derive an expression for array factor of N element linear array, where all elements are equally fed and spaced. Also find the expression for the position of principle maxima, nulls and secondary maxima.	10					
Q4 (a)	A radio link has 15 watt transmitter connected to an antenna of 2.5 m^2 effective aperture at 5 GHz. The receiving antenna has an effective aperture of 0.5 m^2 and is located at a15 km line of sight distance from transmitting antenna. Assume lossless antennas. Find power delivered to the receiver.	10					
(b)	Derive an expression for E field and H field of infinitesimal dipole antenna	10					
Q5 (a)	What is folded dipole Antenna? Draw its typical structure and explain working mechanism. Give its advantages.	10					
(b)	What is Dolph- Chebyshev array? Explain the steps involved in design of Dolph-Chebyshev array.	10					
Q6.	Write short notes (a) Ground effects on Antenna (b) Log periodic Antenna (c) Loop antenna (d) Horn antenna	20					

Paper / Subject Code: 30603 / R F MODELING AND ANTENNAS

Attenuation versus normalized frequency for maximally flat filter prototypes. Adapted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwice Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Dedhum, Mass., 1980, with permission.

Element Values for Maximally Flat Low-Pass Filter Prototypes ($g_0=1,$ $\omega_c=1,$ N=1 to 10)

N	81	£2	gз	£4	25	26	27	28	g 9	#10	811
1	2,0000	(WHR). I	in the first of the control of the green control of the control of	moje kancijana koj, mijesnika jeloviju, izv	Carrier Control Commission Commis	терен путра по на кома просед на пуро	1 * \$40°0 1*** 1*** 1*** 1*** 1*** 1*** 1*** 1	galand Aran meneral and department of the access of the	ene according to the full full complete of the foreign	Tultural film film film en effektiveler en en feren en en	e comme nemerimo e consecuçõe, co
2	1.4142	1.4142	1.0000								
.3	0000.1	2.0000	1.0000	1.0000							
4	0.7654	1.8478	1.8478	0.7654	0000.1						
5	0.6180	1,6180	2.0000	1.6180	0.6180	1.0000					
6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	1.0000				
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0,4450	1.0000			
8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
9	0.3473	HOOD, I	1.5321	1.8794	2 (ини)	1.8794	1.5321	1.0000	0.3473	0000,1	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1,4142	0.9080	0.3129	1.0000

Source: Reprinted from G. L. Manthaer, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Marching Networks, and Compling Structures, Artech House, Dedham, Mass., 1980, with permission.

Q. P. Code: 32505

(3 Hours) Max Marks: 80

Note: 1. Question No. 1 is compulsory.

- 2. Out of remaining questions, attempt any three questions.
- 3. Assume suitable additional data if required.
- 4. Figures in brackets on the right hand side indicate full marks.

1.	(A)	State Central limit theorem and give its significance	(05)
	(B)	State the three axioms of probability.	(05)
	(C)	State and explain Bayes Theorem.	(05)
	(D)	Define Power spectral density and prove any two properties.	(05)
2.	(A)	Prove that if input to LTI system is w.s.s. then the output is also w.s.s.	(10)
	(B)	In a factory, four machines A_1 , A_2 , A_3 and A_4 produce 35%, 10%, 25% and 30% of the items respectively. The percentage of defective items produced by them is 3%, 5%, 4% and 2%, respectively. An item is selected at random. (i) What is the probability that the selected item will be defective? (ii) Given that the item is defective what is the probability that it was produced by machine A_4 ?	(10)
3.		The joint probability density function of two random variables is given by	(20)
		$f_{x,y}(x,y) = 15e^{-3x-3y}$; $x \ge 0$, $y \ge 0$	
		i) Find the probability that $x<2$ and $y>0.2$.	
		ii) Find the marginal densities of x and y .	
		iii) Are x and y independent?	
		iv) Find $E(x/y)$ and $E(y/x)$.	
4.	(A)	A stationary process is given by $X(t) = 10 \cos [100 t + \theta]$ where θ is a random variable with uniform probability distribution in the interval $[-\Pi, \Pi]$. Show that	(10)
	(B)	it is a wide sense stationary process. Explain Strong and weak law of large numbers.	(05)
	. (Write short notes on the following special distributions.	(05)
S		i) Uniform distribution. ii) Gaussian distribution.	(03)
5.	(A)	Define discrete and continuous random variables by giving examples. Discuss the properties of distribution function.	(10)
	(B)	A random variable has the following exponential probability density function: $f(x) = Ke^{- x }$. Determine the value of K and the corresponding distribution function.	(10)
6.	(A)	COXX, 6X, 42, 22, 23	(10)
		X and Y. When do we say that X and Y are(i) Orthogonal,(ii) Independent, and(iii) Uncorrelated?	
	(D)	Are uncorrelated variables independent? State and prove Chapman-Kolmogorov equation.	(10)
100	(B)	State and prove Chapman-Konnogorov equation.	(10)