Examination 2021 under cluster (Lead College:

Examinations Commencing from 15th June 2021 to 24th June 2021

Program: BE Electronics & Telecommunication Engineering

Curriculum Scheme: Rev 2019 'C' Scheme Examination: SE Semester III

Course Code: ECC301 and Course Name: Engineering Mathematics III

Time: 2 hour Max. Marks: 80

Note: All Questions are compulsory.

Q1 carrying 40 marks. Q2 and Q3 are carrying 20 equal marks

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Find Laplace transform of $e^{-1(t)}$
Option A:	1 s-10
Option B:	1 s+1(t
Option C:	10 s+10t
Option D:	1 5+10
2.	If $L[f(t)] = \frac{4s}{s^2-9}$, find $L[f(2t)]$
Option A:	<u>s</u> <u>s²-36</u>
Option B:	4s 52-36
Option C:	$\frac{4S}{S^2-9}$
Option D:	4s s ² -18
3.	Find $L\left \frac{sint}{t}\right $
Option A:	$cot^{-1}(s)$
Option B:	$tar^{-1}(S)$
Option C:	$\cot^{-1}(\frac{s}{a})$
Option D:	Does not exists
4.	Find $L \int_0^t cos^2 u dv $
Option A:	<u>s</u> <u>s²+4</u>

Option B:	<u>s</u> <u>s²+1</u>
Option C:	1 5 ² +4
	5-44
Option D:	1 5 ² +1
	2=11
5.	$L^{-1}\left[\frac{4s-3}{s^2+5}\right] = ?$
Option A:	4cos3t - sin3t
Option B:	$4\cos^3t + \sin^3t$
Option C:	$4\cos 3t - 3\sin 3t$
Option D:	$4\sin^3 t - \cos^3 t$
6.	Find $L^{-1} \left \frac{5+2}{5^2+45+15} \right $
Option A:	$e^{2t}cos3t$
Option B:	$e^{-2t}cos3t$
Option C:	$e^{2t}sin3t$
Option D:	$e^{-2t}sin^3t$
	7. D
7.	In Fourier series of $f(x) = x + x^3$ in $(-\pi_1\pi)$. The coefficient of $\cos 2x$ is
Option A:	-1
Option B:	$\frac{-1}{2}$
Option C:	1
Option D:	0
-	
8.	$f(x) = x^2 + \sin x$ is
Option A:	Even as well as odd function
Option B:	neither even nor odd function
Option C:	odd function
Option D:	Even function
Pron B.	— · · · · · · · · · · · · · · · · · · ·
9.	In the half range sine Series of $f(x) = x - x^2$ in $(0, 1)$ coefficient k_2 is
Option A:	0
Option B:	$\frac{1}{n^2}$
Option C:	$\frac{8}{\overline{n}^3}$
Option D:	$\frac{4}{\pi^3}$
10.	A function f(t) is periodic with period 2π if
Option A:	$f(t + 2\pi) = 0$
Option B:	
Орион В.	$f(\underline{t} + 2\underline{n}) = 2\underline{n}$

Option C:	$f(\underline{t} + 2\underline{\pi}) = f(2\underline{\pi})$
Option D:	$f(t+2\pi)=f(t)$
11.	Find the corresponding analytic function for harmonic function
	$v = 3x^2y + 6xy - y^3$ is
Option A:	$z^3 - z^2 + c$
Option B:	$z^2 + 3z^3 + c$
Option C:	$z^3 + 3z^2 + c$
Option D:	$z^3 - 3z^2 + c$
12.	Which of the following statement is true
Option A:	A bilinear transformation is a combination of basic transformations
	translation, rotation and inversion
Option B:	A bilinear transformation is known as Mobius Transformation
_	
Option C:	Every Bilinear transformation is conformal
Option D:	All options are TRUE
13.	If u and v are the harmonic functions then which of the following function is not harmonic function
Option A:	uv
Option B:	
Option C:	$\frac{u+v}{v}$
Option D:	<u>u-v</u>
14.	Find the eigen values of matrix A ,
	$7 4 -1$ Where $A = \begin{bmatrix} 4 & 7 & -1 \end{bmatrix}$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Option A:	$\lambda = 3, 3, 12$
Option B:	$\lambda = 12, -3, -3$
Option C:	$\lambda = 7, 7,4$
Option D:	$\lambda = -12, 3,3$
1.5	1 2
15.	$If A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \text{ find } A^4.$
Option A:	5 <i>I</i>
Option B:	25 <i>I</i>
Option C:	125 <i>I</i>
Option D:	625 <i>I</i>

16.	If $A = \begin{bmatrix} 2 & 0 & 0 \\ 3 & -1 & 0 \end{bmatrix}$ Find ligen Values of $A^2 + 2A + I$ -4 5 0
Option A:	9,0,0
Option B:	9,0,1
Option C:	3,0,0
Option D:	9,4,1
17.	If the matrix A has eigen value -1,-1,2 then algebraic multiplicity of A for $\lambda = -1$ is
Option A:	-1
Option B:	0
Option C:	1
Option D:	2
18.	The divergence and curl of $\bar{a} = 3i - j + 2k$ is
Option A:	$\operatorname{div} \bar{a} = 0$, $\operatorname{curl} \bar{a} = 5$
Option B:	$\operatorname{div} \bar{a} = 2$, $\operatorname{curl} \bar{a} = 0$
Option C:	$\operatorname{div} \bar{a}=3$, $\operatorname{curl} \bar{a}=3$
Option D:	$\operatorname{div} \bar{a} = 0$, $\operatorname{curl} \bar{a} = 0$
19.	If the vector $\vec{F} = (x + 2y + az)i + (bx - 3y - z)j + (4x + cy + 2z)k$
	is irrotational; find the constants a, b, c.
Option A:	a=1, b=2, c=4
Option B:	a=-1, b=4, c=2
Option C:	a=4, b=2, c=1
Option D:	a=4, b=2, c=-1
20.	Evaluate $ydx + xdy$ along $y = x$ from A(0,0) to B(1,1)
Option A:	1
Option B:	2xy
Option C:	-1
Option D:	

Q2.	Solve any Four out of Six 5 marks each
(20 Marks Each)	
A	Find $L \int_0^t e^{2u} \cos^2 u du $
В	$L^{-1} tan^{-1}(\frac{2}{s^2}) $
С	Obtain the Fourier series for $f(x) = x$ in $(0,2\pi)$
D	Find the analytic function $f(z)$ whose real part is $\frac{1}{2}\log(x^2+y^2)$
E	Show that $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \end{bmatrix}$ satisfies Cayley-Hamilton theorem. Hence $\begin{bmatrix} 3 & 1 & -1 \end{bmatrix}$

	find A^{-1}
F	Evaluate by using Green's theorem $(3x^2 - 8y^2)dx + (4y - 6xy)dy$, where C is the closed region bounded $byy = x$ and $y = x^2$

Q3.	Solve any Four out of Six 5 marks each	h
(20 Marks Each)		
A	Evaluate $\int_{0}^{\infty} e^{-t} \left(\frac{\cos 3t - \cos t}{t} \right) dt$	
В	Find the inverse Laplace transform by using convolution theorem $\frac{S+3}{(5^2+65+13)^2}$	
С	Obtain the half range Fourier cosine series expansion for $f(x) = x(2-x)$ in (0,2)	
D	Obtain the orthogonal trajectories for the family of curves $e^{-x}\cos y = C$	•
E	Find the eigen values and eigen vector for $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \end{bmatrix}$	
F	Show that $\overline{F} = (y^2 - z^2 + 3yz - 2x)i + (3xz + 2xy)j + (3xy - 2xz + 2z)k$ is both irrotational and solenoidal.	-

Examination 2021 under cluster __(Lead College: _____

Examinations Commencing from 15th June 2021 to 24th June 2021

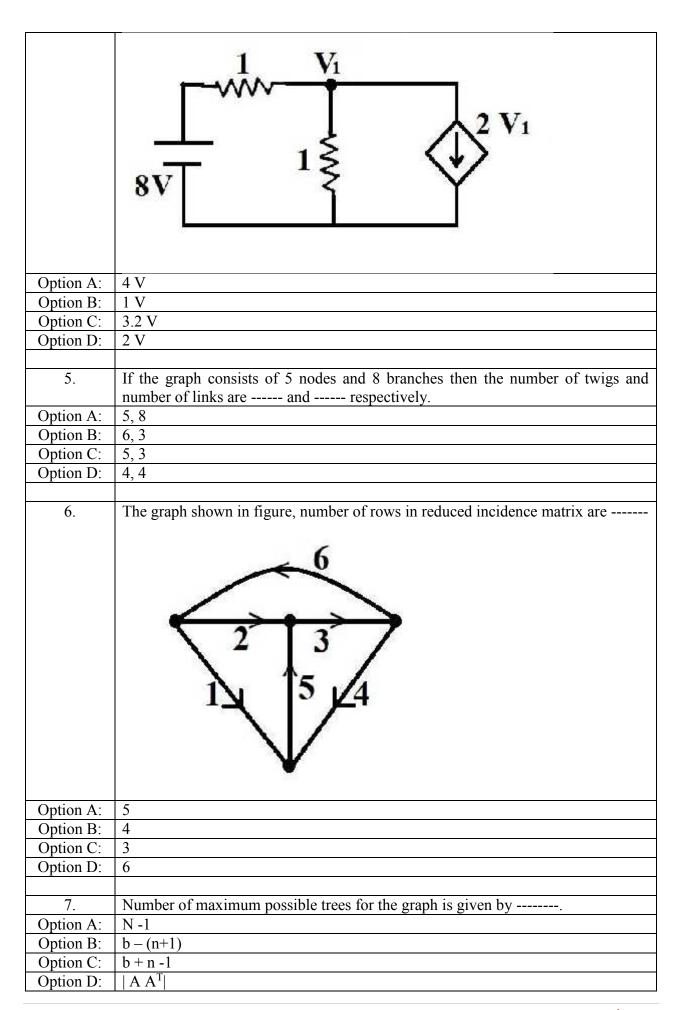
Program: BE Electronics & Telecommunication Engineering

Curriculum Scheme: Rev 2019 'C' Scheme Examination: SE Semester III

Course Code: ECC301 and Course Name: Engineering Mathematics III

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	D
Q2.	В
Q3.	A
Q4	C
Q5	A
Q6	В
Q7	D
Q8.	В
Q9.	A
Q10.	D
Q11.	С
Q12.	D
Q13.	C
Q14.	A
Q15.	В
Q16.	В
Q17.	D
Q18.	D
Q19.	D
Q20.	A

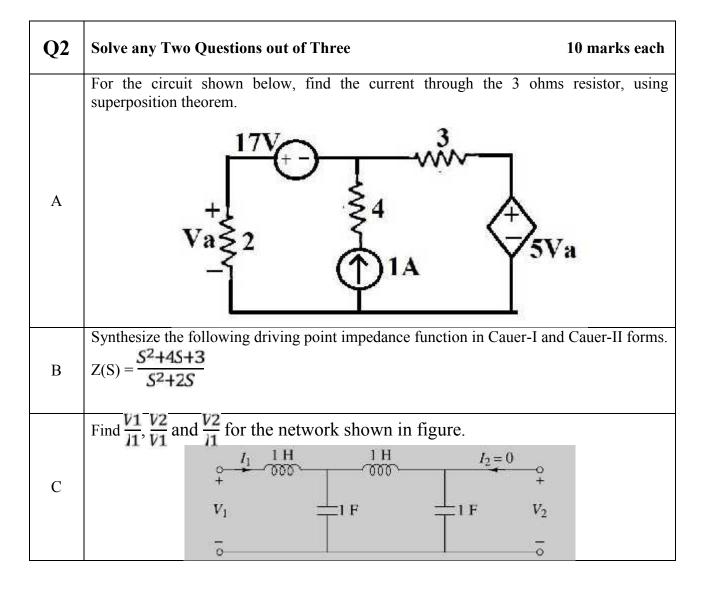
Examination June 2021

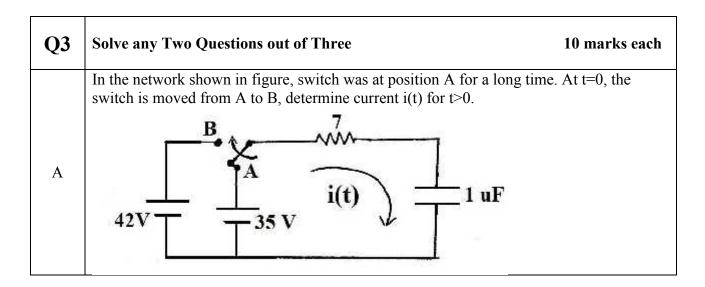

Examinations Commencing from 15th June 2021 to 26th June 2021

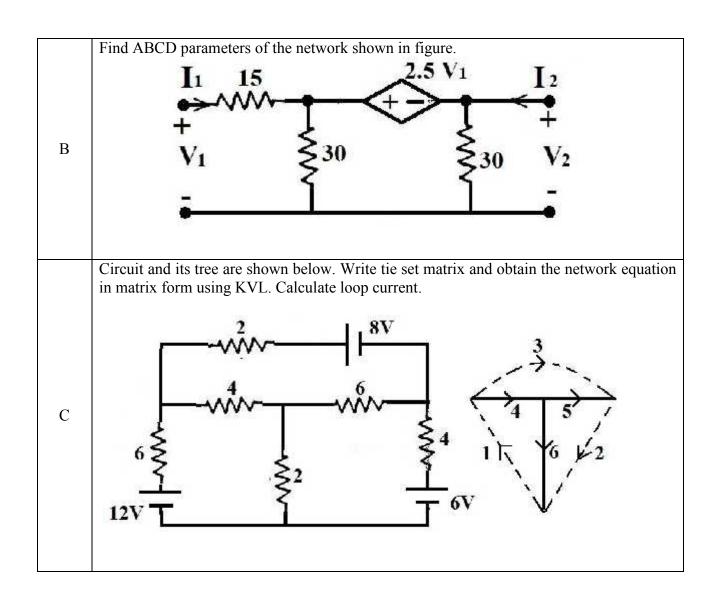
Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev-2019 Examination: SE Semester III

Course Code: ECC304 and Course Name: Network Theory


Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.
1.	In which theorem equivalent circuit is shown with parallel combination of current source, equivalent resistor and Load?
Option A:	Norton's Theorem
Option B:	Superposition Theorem
Option C:	Maximum power transfer theorem
Option D:	Thevenin's theorem
1	
2.	Coil L1 and L2 are inductively coupled and connected in series with value 16mH
	and 4mH respectively. If the coefficient of coupling is 0.75, calculate mutual inductance (M).
Option A:	8 mH
Option B:	12 mH
Option C:	6 mH
Option D:	10 mH
3.	In the following figure calculate loop current (Ix). $ \begin{array}{c c} & & & & & & & & \\ & & & & & & & \\ & & & &$
Option A:	1 A
Option B:	5 A
Option C:	6 A
Option D:	4 A
4.	Refer the following figure to determine node voltage V1.




8.	The Laplace transform of the time function $f(t-a)$ is
Option A:	$e^{-as}F(S)$
Option B:	F(S-a)
Option C:	$e^{as}F(S)$
_	
Option D:	F(S+a)
9.	In a given network, the switch is at position A for a long time and moved to position B at t=0. Current in the inductor at t=0+ is equal to 40 40 10V 10V 10V 10V 10V 10V
Option A:	8 A
Option B:	0.25 A
Option C:	1 A
Option D:	1.25 A
орион В.	1,2011
	to position B at t=0. Voltage across the capacitor at t = 0+ is equal to $ \begin{array}{c} \mathbf{B} \\ \mathbf{A} \\ \mathbf{I}(\mathbf{I}) \end{array} $ $ \begin{array}{c} \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \end{array} $ $ \begin{array}{c} \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \end{array} $ $ \begin{array}{c} \mathbf{I} \\ \mathbf{I} \\ \mathbf{I} \end{array} $
Option A:	3.5 V
Option B:	35 V
Option C:	5 V
Option D:	25 V
•	
11.	Convert R, L and C into S domain.
Option A:	R, L and C
Option B:	RS, LS and CS
Option C:	R, LS and 1/CS
Option D:	R, 1/LS and CS
12.	A system is represented by transfer function 12/(S+4)(S+2), the DC gain of the system is
Option A:	21
Option B:	14
Option C:	1.5

Option D:	294	
13.	The driving point impedance function $Z(S)$ of a network has pole-zero location shown in figure, then $Z(S)$ is given by	
Option A:	$\frac{H(S+4)}{(S+2-2j)(S+2+2j)}$	
Option B:	$\frac{H(S-4)}{(S-2-2j)(S-2+2j)}$	
Option C:	$\frac{H(S-4)}{(S+2-2j)(S+2+2j)}$	
Option D:	$\frac{H(S+4)}{(S+2-2j)(S-2-2j)}$	
14.	Number of poles in the following functions are $F(S) = \frac{S^3 + 6S^2 + 4S + 5}{S^4 + 6S^3 + 3S^2 + 5S + 1}$	
Option A:	1	
Option B:	3	
Option C:	2	
Option D:	4	
15.	Two 2 port networks are connected in cascade. The combination is to be represented as a single two-port network. The parameters obtained by multiplying individual are	
Option A:	Z-parameter	
Option B:	Y-parameter	
Option C:	h-parameter	
Option D:	ABCD-parameter	
16.	Determine Y11 and Y12 parameters of the network given in figure.	

	I_1 I_2
	* * * * * * * * * * * * * * * * * * *
	+ 1 5 1 +
	$V1 \geq 2 \qquad 2 \geq V2$
	3 2 4
	_
	•
	V11 020 1V12 070
Option A:	Y11 = -0.2 □ and Y12 = 0.7 □
Option B: Option C:	$Y11 = 0.7$ \square and $Y12 = -0.2$ \square \square \square and $Y12 = 5$ \square
Option C.	$Y11 = 7 \square$ and $Y12 = 3 \square$
Орион D.	111-7 and 112-2 a
17.	Two port equations of a networks are
	$V_2 = 8 I_1 + 7 I_2$
	$V_1 = 3 I_1 + 5 I_2$
	Z parameters of give network are
Option A:	$Z_{11} = 5, Z_{12} = 3, Z_{21} = 7, Z_{22} = 8$
Option B:	$Z_{11} = 3, Z_{12} = 5, Z_{21} = 8, Z_{22} = 7$
Option C:	$Z_{11} = 5, Z_{12} = 8, Z_{21} = 3, Z_{22} = 7$
Option D:	$Z_{11} = 3, Z_{12} = 5, Z_{21} = 7, Z_{22} = 8$
10	
18.	Polynomial $P(S) = S^3 + 4S^2 + 3S + 6$ is to be tested for Hurwitz. Elements in the
Option A:	first column of Routh's array are 1, 4, -1.5, 6
Option B:	1, 3, 4, 6
Option C:	1, 4, 3, 6
Option D:	1, 4, 1.5, 6
option B.	1, 1, 1.5, 0
19.	145
	Driving point admittance function $Y(S) = \frac{140}{S^2 + 4}$ is
Option A:	Parallel combination of two resistors
Option B:	Series combination of inductor and resistor
Option C:	Series combination of Inductor and capacitor
Option D:	Parallel combination of Inductor and capacitor
20	Delicing a sint insuradous a forestion 7(0) = 5 + 4
20.	Driving point impedance function $Z(S) = 5 + 4s$ is
Option A:	Parallel combination of resistors and inductor.
Option B:	Series combination of resistor and inductor
Option C:	Parallel combination of Capacitor and inductor.
Option D:	Series combination of two inductors

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev-2019 Examination: SE Semester III

Course Code: ECC304 and Course Name: Network Theory

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	A
Q2.	С
Q3.	A
Q4	D
Q5	D
Q6	С
Q7	D
Q8.	A
Q9.	С
Q10.	D
Q11.	С
Q12.	С
Q13.	A
Q14.	D
Q15.	D
Q16.	В
Q17.	В
Q18.	D
Q19.	С
Q20.	В

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

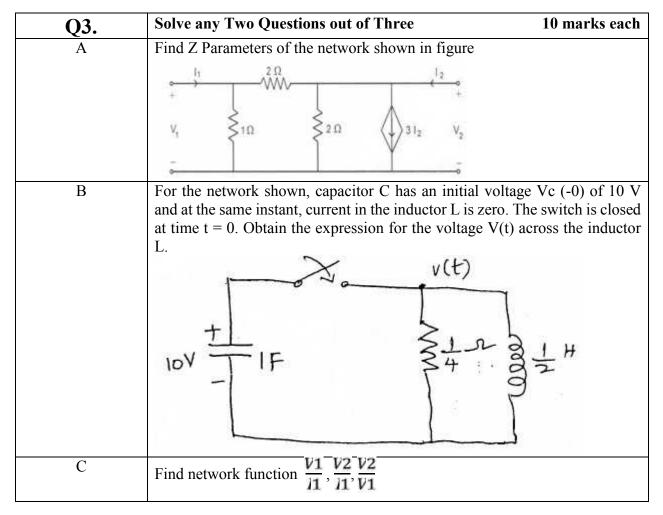
Program: Bachelor of Engineering

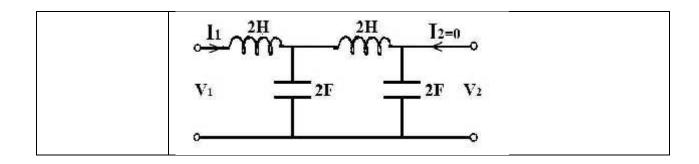
Curriculum Scheme: Electronics & Telecommunication (Rev2019 'C' Scheme)

Examination: **DSE** Semester **III**

Course Code: ECC304 and Course Name: Network Theory

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.
	vonepunsory while twirty order marries
1.	Norton's theorem states that a complex network connected to a load can be replaced with an equivalent impedance
Option A:	in series with a current source
Option B:	in parallel with a voltage source
Option C:	in series with a voltage source
Option D:	in parallel with a current source
2.	Find current I?
	$ \begin{array}{c c} & 1 & 28 \Omega \\ \hline 10 A & \uparrow & 5 A & 8 \Omega \end{array} $
Option A:	1 A
Option B:	2 A
Option C:	4 A
Option D:	8 A
3.	Determine V _{th} in the following figure. A 3 ohm 2 ohm B
Option A:	4.2
Option B:	3.8
Option C:	6.6
Option D:	2.8


4.	Which one of the following is a cut set of the graph in the given figure?
	3
	2 4
	1 75 16
Option A:	1, 2, 3, and 4
Option B:	2, 3, 4, and 6
Option C:	1, 4, 5, and 6
Option D:	1, 3, 4, and 5
5.	If 10 V independent valtage source is connected in series with 100 chm and D
3.	If 10 V independent voltage source is connected in series with 100 ohm and R _L load. Maximum power that can be transferred to the load is
Option A:	5 W
Option B:	10 W
Option C:	0.25 W
Option D:	2.5 W
1	
6.	If a graph consists of 5 nodes and 7 branches, then the number of twigs and number
	of links are and respectively.
Option A:	3, 4
Option B:	5, 2
Option C:	2, 5
Option D:	4, 3
7.	Reduced Incidence matrix can be obtained by
7. Option A:	Reduced Incidence matrix can be obtained by Eliminating a row of complete incidence matrix
7. Option A: Option B:	Reduced Incidence matrix can be obtained by Eliminating a row of complete incidence matrix Multiplying complete incidence matrix with its transpose
Option A: Option B:	Eliminating a row of complete incidence matrix
Option A: Option B: Option C:	Eliminating a row of complete incidence matrix Multiplying complete incidence matrix with its transpose A A ^T
Option A: Option B:	Eliminating a row of complete incidence matrix Multiplying complete incidence matrix with its transpose
Option A: Option B: Option C:	Eliminating a row of complete incidence matrix Multiplying complete incidence matrix with its transpose A A ^T
Option A: Option B: Option C: Option D:	Eliminating a row of complete incidence matrix Multiplying complete incidence matrix with its transpose A A ^T Obtaining tree
Option A: Option B: Option C: Option D:	Eliminating a row of complete incidence matrix Multiplying complete incidence matrix with its transpose A A ^T Obtaining tree In the following figure, a switch was opened for a long time and then closed at t =
Option A: Option B: Option C: Option D:	Eliminating a row of complete incidence matrix Multiplying complete incidence matrix with its transpose A A ^T Obtaining tree In the following figure, a switch was opened for a long time and then closed at t =
Option A: Option B: Option C: Option D:	Eliminating a row of complete incidence matrix Multiplying complete incidence matrix with its transpose A A ^T Obtaining tree In the following figure, a switch was opened for a long time and then closed at t =
Option A: Option B: Option C: Option D:	Eliminating a row of complete incidence matrix Multiplying complete incidence matrix with its transpose $ A A^T $ Obtaining tree In the following figure, a switch was opened for a long time and then closed at t = 0. Determine i(t) at t = 0 ⁺ .
Option A: Option B: Option C: Option D:	Eliminating a row of complete incidence matrix Multiplying complete incidence matrix with its transpose A A ^T Obtaining tree In the following figure, a switch was opened for a long time and then closed at t =
Option A: Option B: Option C: Option D: 8.	Eliminating a row of complete incidence matrix Multiplying complete incidence matrix with its transpose $ A A^T $ Obtaining tree In the following figure, a switch was opened for a long time and then closed at t = 0. Determine i(t) at t = 0 ⁺ .
Option A: Option B: Option C: Option D: 8. Option A:	Eliminating a row of complete incidence matrix Multiplying complete incidence matrix with its transpose $ A A^T $ Obtaining tree In the following figure, a switch was opened for a long time and then closed at t = 0. Determine i(t) at t = 0 ⁺ .
Option A: Option B: Option C: Option D: 8.	Eliminating a row of complete incidence matrix Multiplying complete incidence matrix with its transpose $ A A^T $ Obtaining tree In the following figure, a switch was opened for a long time and then closed at t = 0. Determine i(t) at t = 0 ⁺ .
Option A: Option B: Option C: Option D: 8. Option A: Option A: Option B:	Eliminating a row of complete incidence matrix Multiplying complete incidence matrix with its transpose $ A A^T $ Obtaining tree In the following figure, a switch was opened for a long time and then closed at t = 0. Determine i(t) at t = 0 ⁺ . 1 A 1 A 0.3 A
Option A: Option B: Option C: Option D: 8. Option A: Option A: Option B: Option C: Option D:	Eliminating a row of complete incidence matrix Multiplying complete incidence matrix with its transpose A A ^T Obtaining tree In the following figure, a switch was opened for a long time and then closed at t = 0. Determine i(t) at t = 0 ⁺ . 1 A 0.3 A 0.7 A 0 A
Option A: Option B: Option C: Option D: 8. Option A: Option A: Option B: Option C: Option D:	Eliminating a row of complete incidence matrix Multiplying complete incidence matrix with its transpose A A ^T Obtaining tree In the following figure, a switch was opened for a long time and then closed at t = 0. Determine i(t) at t = 0 ⁺ . 1 A
Option A: Option B: Option C: Option D: 8. Option A: Option A: Option B: Option C: Option D: 9. Option A:	Eliminating a row of complete incidence matrix Multiplying complete incidence matrix with its transpose A A ^T Obtaining tree In the following figure, a switch was opened for a long time and then closed at t = 0. Determine i(t) at t = 0 ⁺ . 1 A
Option A: Option B: Option C: Option D: 8. Option A: Option A: Option B: Option C: Option D: 9. Option A: Option B:	Eliminating a row of complete incidence matrix Multiplying complete incidence matrix with its transpose A A ^T Obtaining tree In the following figure, a switch was opened for a long time and then closed at t = 0. Determine i(t) at t = 0 ⁺ . 1 A 0.3 A 0.7 A 0 A For an RC driving point impedance function, the poles, and zeros should alternate on real axis should alternate only on negative real axis
Option A: Option B: Option C: Option D: 8. Option A: Option A: Option B: Option C: Option D: 9. Option A:	Eliminating a row of complete incidence matrix Multiplying complete incidence matrix with its transpose A A ^T Obtaining tree In the following figure, a switch was opened for a long time and then closed at t = 0. Determine i(t) at t = 0 ⁺ . 1 A


10.	In figure, switch is at position A for long time, what is current at $t = 0^{-}$?
10.	in figure, switch is at position A for long time, what is current at t = 0
	20 T 20 \$ i(t) \$ I H
Option A:	20 A
Option B:	3 A
Option C:	1.81 A
Option D:	2 A
option B.	
11.	Determine location of poles of following transfer function
	$F(S) = \frac{S^2+1}{S^2+4}$
Option A:	0, 2j
Option B:	1j, -1j
Option C:	-3, -4
Option D:	2j, -2j
12.	S41
	For transfer function (s) = $\frac{5+1}{5+7}$ Which of the following is the correct statement?
Option A:	All the poles are at the right half of the S plane.
Option B:	There is a pole at $s = -7$
Option C:	System has three zeros.
Option D:	There is zero at right half of the S plane
13.	Find out Z_{11} ?
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Option A:	5/3 Ohm
Option B:	3/2 Ohm
Option C:	2 Ohm
Option D:	2/3 Ohm
14.	Two port networks are connected in cascade. The combination is to be represented as a single two-port network. The parameters obtained by multiplying individual are
Option A:	Z-parameter matrix
Option B:	Y-parameter matrix
Option C:	h-parameter matrix
Option D:	ABCD-parameter matrix

15.	One of the conditions for two port network to be reciprocal is
Option A:	$Z_{11} = Z_{22}$
Option B:	$h_{21} = -h_{12}$
Option C:	A = D
Option D:	$Y_{11} = Y_{22}$
16.	Which of the following is the correct generalized KVL equation in graph theory?
Option A:	$B.Z_b.I_l = B.Z_bI_S$
Option B:	$Z_b.B.B^{\mathrm{T}}I_l = B(Z_bI_S - V_S)$
Option C:	$B.Z_b.B^{T}I_l = B.V_S - B.Z_bI_S$
Option D:	$Y.V_t = Q I_S - Q Y_b V_S$
17.	A Try a new active who has the fellowing agreeting
1 / .	A Two port network has the following equations.
	$I2 = 10 I_1 + 2 V_2$ and $V_1 = 5 I_1 + 6 V_2$ and
Ontion A:	Hybrid parameters are h_{11} = and h_{12} = respectively. 6 and 5
Option A: Option B:	10 and 2
Option C:	5 and 6
Option D:	2 and 10
18.	If tree consists of 4 twigs and 3 links, the number of rows in fundamental cutset
	matrix are
Option A:	5
Option B:	4
Option C:	3
Option D:	7
10	
19.	For a series connected R-C network where $R = 100$ ohm and $C = 0.1$ uF connected
	in series. Time constant (τ) of a given circuit is
Option A:	10 uSec
Option B:	1 / 100 Sec
Option C:	100 <u>u</u> Sec
Option D:	1 uSec
20.	If a dependent current source has value $8V_1$, where V_1 is voltage across a node in
20.	the same circuit, the dependent source represents
Option A:	Current controlled voltage source
Option B:	Voltage controlled current source
Option C:	Voltage controlled voltage source
Option C:	Current controlled current source
Орион D.	Current conduited current source

Q2	Solve any Two Questions out of Three	10 marks each
A	Find the current I in 8Ω resistor by using superposition	theorem.

	10v = 15n = 5n = 12n = 820
В	Find Thevenin's equivalent across AB and find the power dissipated in a 25 ohm load.
С	Draw the graph of the network whose incidence matrix is given below $ \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & -1 \\ 0 & -1 & 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 & -1 & 0 & 1 & 0 \end{bmatrix} $

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Bachelor of Engineering

Curriculum Scheme: Electronics & Telecommunication (Rev2019 'C' Scheme)

Examination: **DSE** Semester **III**

Course Code: ECC304 and Course Name: Network Theory

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	D
Q2.	A
Q3.	С
Q4.	D
Q5.	С
Q6.	D
Q7.	A
Q8.	D
Q9.	A
Q10.	D
Q11.	D
Q12.	В
Q13.	A
Q14.	D
Q15.	В
Q16.	С
Q17.	С
Q18.	В
Q19.	A
Q20.	В

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Electronics and Telecommunication

Curriculum Scheme: Rev2019

Examination: SE Semester III

Course Code: ECC303 and Course Name: Digital System Design

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	A full adder can be made out of
Option A:	two half adders
Option B:	two half adders and a OR gate
Option C:	two half adders and a NOT gate
Option D:	three half adders
2.	The circuit of the given figure realizes the function
	A D
	c————————————————————————————————————
Option A:	Y = (A + B) C + DE
Option B:	Y=ĀIBICIDIĒ
Option C:	A(3 + (3 + (3 + (3)))
Option D:	AB + C(D + E)
3.	What is the hex equivalent of 916, a 4-bit binary number?
Option A:	11112
Option B:	10012
Option C:	01102
Option D:	11002
4.	Which of the following logic families dissinctes minimum never 9
	Which of the following logic families dissipates minimum power? CMOS
Option A:	ECL
Option B:	TTL
Option C:	DTL
Option D:	DIL
5.	The counter in the given figure is
٥.	The counter in the given figure is

	C J 1 B J 1 A J 1 CLR CLR CLR CLR
Option A:	Mod 3
Option B:	Mod 6
Option C:	Mod 8
Option D:	Mod 7
6.	TTL inputs are the emitters of a
Option A:	Transistor-transistor logic
Option B:	Multiple-emitter transistor
Option C:	Resistor-transistor logic
Option D:	Diode-transistor logic
opnon B.	
7.	In case of XOR/XNOR simplification, it is required to look for the following:
Option A:	Both Diagonal and Straight Adjacencies
Option B:	Only Offset Adjacencies
Option C:	Both Offset and Straight Adjacencies
Option D:	Both Diagonal and Offset Adjacencies
8.	On addition of 28 and 18 using 2's complement, we get
Option A:	00101110
Option B:	0101110
Option C:	00101111
Option D:	1001111
9.	One example of the use of an S-R flip-flop is as
Option A: Option B:	Transition pulse generator Racer
Option C:	Switch debouncer
Option C:	Astable oscillator
орион Б.	115mole obelimol
10.	If enable input is high then the multiplexer is
Option A:	Enable
Option B:	Disable
Option C:	Saturation
Option D:	High Impedance
11.	In D flip-flop, if clock input is LOW, the D input
Option A:	Has no effect
Option B:	Goes high
Option C:	Goes low
Option D:	Has effect
12.	Why is a demultiplexer called a data distributor?
Option A:	The input will be distributed to one of the outputs

Option B:	One of the inputs will be selected for the output
Option C:	The output will be distributed to one of the inputs
Option D:	Single input gives single output
13.	The difference between a PAL & a PLA is
Option A:	PALs and PLAs are the same thing
Option B:	The PLA has a programmable OR plane and a programmable AND plane, while the PAL only has a programmable AND plane
Option C:	The PAL has a programmable OR plane and a programmable AND plane, while the PLA only has a programmable AND plane
Option D:	The PAL has more possible product terms than the PLA
14.	PROMs are available in
Option A:	Bipolar and MOSFET technologies
Option B:	MOSFET and FET technologies
Option C:	FET and bipolar technologies
Option D:	MOS and bipolar technologies
15.	The use of VHDL can be done in ways.
Option A:	2
Option B:	3
Option C:	4
Option D:	5
16.	What is the preset condition for a ring shift counter?
Option A:	All FFs set to 1
Option B:	All FFs cleared to 0
Option C:	A single 0, the rest 1
Option D:	A single 1, the rest 0
17.	In a positive edge triggered JK flip flop, a low J and low K produces?
Option A:	High state
Option B:	Low state
Option C:	Toggle state
Option D:	No Change State
10	
18.	Which is the major functioning responsibility of the multiplexing combinational
O 1: A	circuit?
Option A:	Decoding the binary information Comparties of all mintages in an autust function with OP cota
Option B:	Generation of all minterms in an output function with OR-gate Generation of selected path between multiple sources and a single destination
Option C:	· · · · ·
Option D:	Encoding of binary information
19.	The cotal number (651-124)8 is aquivalent to
	The octal number (651.124)8 is equivalent to (1A9.2A)16
Option A: Option B:	(1A9.2A)16 (1B0.10)16
Option C:	(1A8.A3)16
Option C:	(180.80)16
<u> </u>	(100.00)10
20.	The addition of +19 and +43 results as in 2's complement system.

Option A:	11001010
Option B:	101011010
Option C:	00101010
Option D:	0111110

subjective/descriptive questions

Option 1

Q2	Solve any Four out of Six 5 marks each
(20 Marks Each)	
A	Compare TTL and CMOS Logic Families.
В	Design full adder using 3:8 decoder.
С	Convert (532.125) base 8, into decimal, binary and hexadecimal.
D	VHDL Code for full subtractor.
Е	Convert SR Flip Flop to JK Flip Flop.
F	Compare SRAM with DRAM.

Option 2

Q3.	Solve any Two Questions out of Three	10 marks each
(20 Marks Each)		
A	Design 3 bit binary to gray converter.	
В	Minimize the following expression using Quine Mc-cluskey	y technique.
	$F(A,B,C,D)=\sum M(0,1,2,3,5,7,9,11)$	
С	Design Synchronous counter using D-type flip flops for getti	ng the following
	sequence 0-2-4-6-0.take care of lockout condition.	

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Electronics & Telecommunication

Curriculum Scheme: Rev2019 Examination: SE Semester III

Course Code: ECC303 and Course Name: Digital System Design

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	В
Q2.	A
Q3.	В
Q4	A
Q5	В
Q6	В
Q7	D
Q8.	В
Q9.	С
Q10.	В
Q11.	A
Q12.	A
Q13.	В
Q14.	D
Q15.	В
Q16.	D
Q17.	D
Q18.	С
Q19.	A
Q20.	D

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Bachelor of Engineering

Curriculum Scheme: Electronics & Telecommunication (Rev2019 'C' Scheme)

Examination: **DSE** Semester **III**

Course Code: ECC303 and Course Name: Digital System Design

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.
	compuisory and carry equal marks.
1.	Convert binary number into gray code: 100101.
Option A:	101101
Option B:	001110
Option C:	110111
Option D:	111001
1	
2.	The representation of octal number (532.2)8 in decimal is
Option A:	(346.25)10
Option B:	(532.864)10
Option C:	(340.67)10
Option D:	(531.668)10
•	
3.	The octal number (651.124)8 is equivalent to
Option A:	(1A9.2A)16
Option B:	(1B0.10)16
Option C:	(1A8.A3)16
Option D:	(1B0.B0)16
4.	How many AND gates are required to realize $Y = CD + EF + G$?
Option A:	4
Option B:	5
Option C:	3
Option D:	2
5.	Which of the following is not a basic gate?
Option A:	AND
Option B:	OR
Option C:	EXOR
Option D:	NOT
6.	A(A+B) = ?
Option A:	AB
Option B:	1
Option C:	(1 + AB)
Option D:	A

7.	A Karnaugh map (K-map) is an abstract form of diagram organized
	as a matrix of squares.
Option A:	Venn Diagram
Option B:	Cycle Diagram
Option C:	Block diagram
Option D:	Triangular Diagram
r	
8.	Odd parity of word can be conveniently tested by
Option A:	OR gate
Option B:	AND gate
Option C:	NAND gate
Option D:	XOR gate
-	
9.	If A and B are the inputs of a half adder, the sum is given by
Option A:	A AND B
Option B:	A OR B
Option C:	A XOR B
Option D:	A EX-NOR B
10.	The output of a subtractor is given by (if A, B and X are the inputs).
Option A:	A AND B XOR X
Option B:	A XOR B XOR X
Option C:	A OR B NOR X
Option D:	A NOR B XOR X
1	
11.	The addition of two decimal digits in BCD can be done through
Option A:	BCD adder
Option B:	Full adder
Option C:	Ripple carry adder
Option D:	Carry look ahead
12.	Which of the following is correct for a D-type flip-flop?
Option A:	The output follows the D input with each clock pulse.
Option B:	The output complement follows the D input with each clock pulse
Option C:	The output remains HIGH all the time
Option D:	The output toggles with each clock pulse
13.	In a Master Slave flip flop the output is taken
Option A:	from the Master
Option B:	from the Slave
Option C:	from Master output ANDED with Slave output
Option D:	from Master output ORED with Slave output
1 /	How can parallal data be taken out of a shift register simultaneously?
Ontion A:	How can parallel data be taken out of a shift register simultaneously? Use the Q output of the first FF
Option A:	
Option B:	Use the Q output of the last FF
Option C:	Tie all of the Q outputs together Lies the Q output of each FE
Option D:	Use the Q output of each FF
15.	PLA is used to implement
13.	I LA is used to inipicincit

Option A:	A complex sequential circuit
Option B:	A simple sequential circuit
Option C:	A complex combinational circuit
Option D:	A simple combinational circuit
-	
16.	VHDL is being used for
Option A:	Documentation only
Option B:	Verification only
Option C:	Synthesis only of digital design
Option D:	Documentation, Verification and Synthesis of digital design
17.	Where do we declare the loop index of a FOR LOOP?
Option A:	Entity
Option B:	Architecture
Option C:	Library
Option D:	It doesn't have to be declared
18.	In delay flip-flop, after the propagation delay.
Option A:	Input follows input
Option B:	Input follows output
Option C:	Output follows input
Option D:	Output follows output
19.	Comparators are used in
Option A:	Memory
Option B:	CPU
Option C:	Motherboard
Option D:	Hard drive
20.	A magnitude comparator is defined as a digital comparator which has
Option A:	Only one output terminal
Option B:	Two output terminals
Option C:	Three output terminals
Option D:	No output terminal

Q2.	Answer the following:	
A	Solve any Two 5 mark	ks each
i.	State and prove Demorgan's theorem.	
ii.	Compare PAL with PLA.	
iii.	Perform the following operation using 2's complement.	
	i) $(14)BASE(10) - (24)BASE(10)$	
	ii) (24)BASE (10) (14)BASE (10)	
В	Solve any One 10 mark	ks each
i.	Minimize the following expression using Quine MC-cluskey techniq	ue.
	$F(A, B, C, D) = \sum M(0,1,2,3,5,7,9,11)$	
ii.	Prove that NAND and NOR gates are universal gates.	

Q3.	Answer the following:	
A	Solve any Two	5 marks each

i.	Write the VHDL code for a full subtractor.
ii.	Convert SR Flip flop to JK Flip flop.
iii.	Design 3 bit full adder circuit and explain in detail.
В	Solve any One 10 marks each
i.	What are shift registers? How are they classified? Explain working of any
	type of shift register.
ii.	Draw and explain a neat circuit diagram of BCD adder.

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Bachelor of Engineering

Curriculum Scheme: Electronics & Telecommunication (Rev2019 'C' Scheme)

Examination: **DSE** Semester **III**

Course Code: ECC303 and Course Name: Digital System Design

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	C
Q2.	A
Q3.	A
Q4.	D
Q5.	С
Q6.	D
Q7.	A
Q8.	D
Q9.	С
Q10.	В
Q11.	A
Q12.	A
Q13.	В
Q14.	D
Q15.	C
Q16.	D
Q17.	D
Q18.	С
Q19.	В
Q20.	С

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev 2019 Examination: SE, Semester: III

Course Code: ECC302 and Course Name: Electronic Devices and Circuits

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1	
1.	For Zener diode as a voltage regulator, load regulation means
Option A:	variable input voltage and fixed load resistor
Option B:	variable input voltage and variable load resistor
Option C:	fixed input voltage and variable load resistor
Option D:	fixed input voltage and fixed load resistor
2.	As an Amplifier BJT should be used in region.
Option A:	Cut-off
Option B:	Saturation
Option C:	Breakdown
Option D:	Active
3.	As an Amplifier MOSFET should be used in region.
Option A:	Cut-off
Option B:	Saturation
Option C:	Breakdown
Option D:	linear
4.	In BJT according to higher to lower doping concentration sequence is
Option A:	base,emitter and collector
Option B:	emitter, collector and base
Option C:	collector,base and emitter
Option D:	Emitter, base and collector
5.	In BJT for Active region junction should be forward bias and junction should be reverse bias
Option A:	BE, CB
Option B:	CB, BE
Option C:	BE, EB
Option D:	CE, BE

increase in temperature. Option A: 25mV Option C: 2.5mV Option D: 25V 7. ICO (reverse saturation current) in value for every 10°C increase in temperature Option A: triples Option B: remains same Option C: zero Option D: doubles 8. Which among the below mentioned implementation strategies is/are precise to obtain an AC equivalent circuit of MOSFET? A. Replacement of all capacitors by open circuits B. Replacement of all capacitors by short circuits C. Setting of all DC voltages to zero D. Setting of all DC voltages to unity Option A: A & C Option B: B & C Option B: B & C Option D: A & D 9. The E-MOSFET drain feedback CS amplifier with the result that rd = 50 k, RF = 10M, RD = 2.2 k, gm = 1.75 mS, find the output impedance? Option A: 49.75 k Option B: 2.11 k Option C: 50 k Option D: 10 M 10. When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option A: RC Option B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Option A: frequency response of each stage depending on the relationships of the critical frequency.	6.	In BJT biasing circuits VBE decreases aboutper degree celsius(°C)
Option B: 2.5mV Option C: 2.5V Option D: 25V 7. ICO (reverse saturation current) in value for every 10°C increase in temperature Uption A: triples Option B: remains same Option C: zero Option D: doubles 8. Which among the below mentioned implementation strategies is/are precise to obtain an AC equivalent circuit of MOSFET? A. Replacement of all capacitors by open circuits B. Replacement of all capacitors by short circuits C. Setting of all DC voltages to zero D. Setting of all DC voltages to unity Option A: A & C Option B: B & C Option C: B & D Option D: A & D 9. The E-MOSFET drain feedback CS amplifier with the result that rd = 50 k, RF = 10M, RD = 2.2 k, gm = 1.75 mS, find the output impedance? Option A: 49.75 k Option B: 2.11 k Option C: 50 k Option D: 10 M 10. When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option A: RC Option B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Option A: Frequency response of each stage depending on the relationships of the critical frequencies.		
Option C: 2.5 V Option D: 25 V 7. ICO (reverse saturation current) in value for every 10°C increase in temperature Option A: triples Option B: remains same Option D: doubles 8. Which among the below mentioned implementation strategies is/are precise to obtain an AC equivalent circuit of MOSFET?	Option A:	25mV
Poption D: 25V Continue	Option B:	2.5mV
7. ICO (reverse saturation current) in value for every 10°C increase in temperature Option A: triples Option B: remains same Option C: zero Option D: doubles 8. Which among the below mentioned implementation strategies is/are precise to obtain an AC equivalent circuit of MOSFFT? A. Replacement of all capacitors by open circuits B. Replacement of all capacitors by short circuits C. Setting of all DC voltages to zero D. Setting of all DC voltages to unity Option A: A & C Option B: B & C Option C: B & D Option D: A & D 1 The E-MOSFET drain feedback CS amplifier with the result that rd = 50 k, RF = 10M, RD = 2.2 K, gm = 1.75 mS, find the output impedance? Option A: 49.75 k Option B: 2.11 k Option C: 50 k Option D: 10 M 10. When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option A: RC Option B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Option A: Frequency response of each stage depending on the relationships of the critical frequencies.	Option C:	2.5V
temperature Option A: triples Option B: remains same Option C: zero Option D: doubles 8. Which among the below mentioned implementation strategies is/are precise to obtain an AC equivalent circuit of MOSFET? A. Replacement of all capacitors by open circuits B. Replacement of all capacitors by short circuits C. Setting of all DC voltages to zero D. Setting of all DC voltages to unity Option A: A & C Option B: B & C Option C: B & D Option D: A & D 9. The E-MOSFET drain feedback CS amplifier with the result that rd = 50 k, RF = 10M, RD = 2.2 K, gm = 1.75 mS, find the output impedance? Option B: 2.11 k Option C: 50 k Option D: 10 M 10. When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Option A: Frequency response of each stage depending on the relationships of the critical frequencies.	Option D:	25V
temperature Option A: triples Option B: remains same Option C: zero Option D: doubles 8. Which among the below mentioned implementation strategies is/are precise to obtain an AC equivalent circuit of MOSFET? A. Replacement of all capacitors by open circuits B. Replacement of all capacitors by short circuits C. Setting of all DC voltages to zero D. Setting of all DC voltages to unity Option A: A & C Option B: B & C Option C: B & D Option D: A & D 9. The E-MOSFET drain feedback CS amplifier with the result that rd = 50 k, RF = 10M, RD = 2.2 K, gm = 1.75 mS, find the output impedance? Option B: 2.11 k Option C: 50 k Option D: 10 M 10. When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Option A: Frequency response of each stage depending on the relationships of the critical frequencies.		
Option B: remains same Option C: zero Option D: doubles 8. Which among the below mentioned implementation strategies is/are precise to obtain an AC equivalent circuit of MOSFET? A. Replacement of all capacitors by open circuits B. Replacement of all capacitors by short circuits C. Setting of all DC voltages to zero D. Setting of all DC voltages to unity Option A: A & C Option B: B & C Option C: B & D Option D: A & D The E-MOSFET drain feedback CS amplifier with the result that rd = 50 k, RF = 10M, RD = 2.2 k, gm = 1.75 mS, find the output impedance? Option B: 2.11 k Option C: 50 k Option D: 10 M 10. When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option A: RC Option B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Frequencies.	7.	, <u> </u>
Option C: zero Option D: doubles 8. Which among the below mentioned implementation strategies is/are precise to obtain an AC equivalent circuit of MOSFET? A. Replacement of all capacitors by open circuits B. Replacement of all capacitors by short circuits C. Setting of all DC voltages to zero D. Setting of all DC voltages to unity Option A: A & C Option B: B & C Option D: A & D The E-MOSFET drain feedback CS amplifier with the result that rd = 50 k, RF = 10M, RD = 2.2 k, gm = 1.75 mS, find the output impedance? Option B: 2.11 k Option C: 50 k Option D: 10 M 10. When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option A: RC Option B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Frequency response of each stage depending on the relationships of the critical frequencies.	Option A:	triples
Option D: doubles 8. Which among the below mentioned implementation strategies is/are precise to obtain an AC equivalent circuit of MOSFET? A. Replacement of all capacitors by open circuits B. Replacement of all capacitors by short circuits C. Setting of all DC voltages to zero D. Setting of all DC voltages to unity Option A: A & C Option B: B & C Option D: B & D 9. The E-MOSFET drain feedback CS amplifier with the result that rd = 50 k, RF = 10M, RD = 2.2 K, gm = 1.75 mS, find the output impedance? Option B: 2.11 k Option C: 50 k Option D: 10 M 10. When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option A: RC Option B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Frequency response of each stage depending on the relationships of the critical frequencies.	Option B:	remains same
8. Which among the below mentioned implementation strategies is/are precise to obtain an AC equivalent circuit of MOSFET? A. Replacement of all capacitors by open circuits B. Replacement of all capacitors by short circuits C. Setting of all DC voltages to zero D. Setting of all DC voltages to unity Option A: A & C Option B: B & C Option D: A & D The E-MOSFET drain feedback CS amplifier with the result that rd = 50 k, RF = 10M, RD = 2.2 K, gm = 1.75 mS, find the output impedance? Option A: 49.75 k Option B: 2.11 k Option C: 50 k Option D: 10 M 10. When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option A: RC Option B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Frequencies.	Option C:	zero
obtain an AC equivalent circuit of MOSFET? A. Replacement of all capacitors by open circuits B. Replacement of all capacitors by short circuits C. Setting of all DC voltages to zero D. Setting of all DC voltages to unity Option A: A & C Option B: B & C Option D: A & D The E-MOSFET drain feedback CS amplifier with the result that rd = 50 k, RF = 10M, RD = 2.2 K, gm = 1.75 mS, find the output impedance? Option B: 2.11 k Option C: 50 k Option D: 10 M When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option A: Coption B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Frequencies.	Option D:	doubles
obtain an AC equivalent circuit of MOSFET? A. Replacement of all capacitors by open circuits B. Replacement of all capacitors by short circuits C. Setting of all DC voltages to zero D. Setting of all DC voltages to unity Option A: A & C Option B: B & C Option D: A & D The E-MOSFET drain feedback CS amplifier with the result that rd = 50 k, RF = 10M, RD = 2.2 K, gm = 1.75 mS, find the output impedance? Option B: 2.11 k Option C: 50 k Option D: 10 M When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option A: Coption B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Frequencies.		
Option B: B & C Option C: B & D Option D: A & D 9. The E-MOSFET drain feedback CS amplifier with the result that rd = 50 k, RF = 10M, RD = 2.2 K, gm = 1.75 mS, find the output impedance? Option A: 49.75 k Option B: 2.11 k Option C: 50 k Option D: 10 M 10. When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option A: RC Option B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Option A: Frequency response of each stage depending on the relationships of the critical frequencies.	8.	obtain an AC equivalent circuit of MOSFET? A. Replacement of all capacitors by open circuits B. Replacement of all capacitors by short circuits C. Setting of all DC voltages to zero
Option B: B & C Option C: B & D Option D: A & D 9. The E-MOSFET drain feedback CS amplifier with the result that rd = 50 k, RF = 10M, RD = 2.2 K, gm = 1.75 mS, find the output impedance? Option A: 49.75 k Option B: 2.11 k Option C: 50 k Option D: 10 M 10. When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option A: RC Option B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Option A: Frequency response of each stage depending on the relationships of the critical frequencies.	Option A:	A & C
Option C: B & D Option D: A & D 9. The E-MOSFET drain feedback CS amplifier with the result that rd = 50 k, RF = 10M, RD = 2.2 K, gm = 1.75 mS, find the output impedance? Option A: 49.75 k Option B: 2.11 k Option C: 50 k Option D: 10 M 10. When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option A: RC Option B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Option A: Frequency response of each stage depending on the relationships of the critical frequencies.		B & C
Option D: A & D 9. The E-MOSFET drain feedback CS amplifier with the result that rd = 50 k, RF = 10M, RD = 2.2 K, gm = 1.75 mS, find the output impedance? Option A: 49.75 k Option B: 2.11 k Option C: 50 k Option D: 10 M 10. When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option A: RC Option B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Option A: Frequency response of each stage depending on the relationships of the critical frequencies.		B & D
Option A: 49.75 k Option B: 2.11 k Option D: 10 M 10. When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option A: RC Option B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Option A: Frequencies.		A & D
Option A: 49.75 k Option B: 2.11 k Option D: 10 M 10. When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option A: RC Option B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Option A: Frequencies.	-	
Option B: 2.11 k Option C: 50 k Option D: 10 M 10. When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option A: RC Option B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Option A: Frequency response of each stage depending on the relationships of the critical frequencies.	9.	
Option C: 50 k Option D: 10 M 10. When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option A: RC Option B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Option A: Frequency response of each stage depending on the relationships of the critical frequencies.	Option A:	49.75 k
Option D: 10 M 10. When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option A: RC Option B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Option A: Frequency response of each stage depending on the relationships of the critical frequencies.	Option B:	2.11 k
10. When a multistage amplifier is to amplify low frequency signal, then one must use coupling Option A: RC Option B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Option A: Frequency response of each stage depending on the relationships of the critical frequencies.	Option C:	50 k
Option A: RC Option B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Option A: Frequency response of each stage depending on the relationships of the critical frequencies.	Option D:	10 M
Option B: Transformer Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Option A: Frequency response of each stage depending on the relationships of the critical frequencies.	10.	
Option C: Direct Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Option A: Frequency response of each stage depending on the relationships of the critical frequencies.	Option A:	RC
Option D: impedance 11. In a multistage amplifier, the overall frequency response is determined by the Option A: Frequency response of each stage depending on the relationships of the critical frequencies.	Option B:	Transformer
11. In a multistage amplifier, the overall frequency response is determined by the Option A: Frequency response of each stage depending on the relationships of the critical frequencies.	Option C:	Direct
Option A: Frequency response of each stage depending on the relationships of the critical frequencies.	Option D:	impedance
Option A: Frequency response of each stage depending on the relationships of the critical frequencies.		
frequencies.	11.	In a multistage amplifier, the overall frequency response is determined by the
Option B: frequency response of the first amplifier	Option A:	
	Option B:	frequency response of the first amplifier

Option C:	frequency response of the last amplifier	
Option D:	lower critical frequency of the first amplifier and the upper critical frequency of the	
	final amplifier	
12.	In the mid frequency region, coupling capacitor acts as a circuits and stray	
	capacitance acts as a circuits	
Option A:	open, short	
Option B:	short, open	
Option C:	short, short	
Option D:	open, open	
13.	The of the two values of higher cutoff frequencies is the dominant	
	frequency of complete system	
Option A:	highest	
Option B:	lowest	
Option C:	middle	
Option D:	average	
14.	Which BJT transistor has a better high frequency response?	
Option A:	NPN	
Option B:	PNP	
Option C:	Neither NPN nor PNP	
Option D:	Frequency response doesn't depend on type of BJT	
15.	The size of a power transistor is made considerably large to	
Option A:	Provide easy handling	
Option B:	Dissipate heat	
Option C:	Facilitate connections	
Option D:	Consume heat	
1		
16.	The main disadvantage of class B type push-pull power amplifier is	
Option A:	Harmonic distortion	
Option B:	Aliasing problem	
Option C:	Crossover distortion	
Option D:	Two transistor required	
17.	If differential mode gain is 3500 and common mode gain is 3.5, the CMRR is	
Option A:	1000	
Option B:	0.001	
Option C:	12250	
Option D:	3503.5	
18.	CMRR of a differential amplifier can be improved by decreasing	

Option A:	Differential voltage gain	
Option B:	Common mode voltage gain	
Option C:	Supply current	
Option D:	Supply voltage	
19.	When a differential amplifier is operated single-ended,	
Option A:	The output is grounded	
Option B:	One input is grounded and signal is applied to the other	
Option C:	Both inputs are connected together	
Option D:	The output is not inverted	
20.	In the common mode,	
Option A:	Both inputs are grounded	
Option B:	The outputs are connected together	
Option C:	An identical signal appears on both the inputs	
Option D:	The output signal are in-phase	

Q2	Solve any Two Questions out of Three 10 marks each	
A	Draw high frequency equivalent circuit of MOSFET CS amplifier with Rs unbypassed and self bias. Derive the expression for input and output upper cutoff frequencies with considering input signal resistor (Rsig) and load resistor (R _L).	
В	Explain class-AB push pull amplifier in detail?	
C	Find the Q point for the following circuit Fig. 1, and also determine the voltage gain, input impedance and output impedance $V_{CC} = +12 \text{ V}$ R_{C} $2.2 \text{ k}\Omega$ C_{1} R_{C} $2.2 \text{ k}\Omega$ C_{2} R_{C} $2.2 \text{ k}\Omega$ R_{C} $R_{$	

Q3.	
A	Solve any Two 5 marks each
i.	Explain Zener diode as a voltage regulator
ii.	Explain construction and working of n-channel E-MOSFET
iii.	Find the Q point for the following circuit Fig. 2

	10 MΩ 1 μF
	÷
	Fig. 2
В	Solve any One 10 marks each
i.	For the circuit shown in Fig. 3, Transistor parameters are $Kn = 1 \text{ mA/V}^2$,
	Vtn = 0.7 V, Cgs = 2 pF, Cgd = 0.2 pF, λ = 0, find the mid band voltage
	gain, miller capacitance and upper cut-off frequency.
	q+10V
	≥1.2 K
	3
	VIONT IME IME
	\$100K & 1
	\$100K 章1K ÷ 47.4F
	÷ \ -
	-10V
	Fig. 3
ii.	Derive the equation of CMRR for the MOS differential pair amplifier.

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Bachelor of Engineering

Curriculum Scheme: Electronics & Telecommunication (Rev2019 'C' Scheme)

Examination: DSE Semester III

Course Code: ECC302 and Course Name: Electronic Devices & Circuits

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	A
Q2.	A
Q3.	C
Q4.	D
Q5.	A
Q6.	A
Q7.	A
Q8.	A
Q9.	A
Q10.	D
Q11.	C
Q12.	D
Q13.	A
Q14.	В
Q15.	D
Q16.	A
Q17.	A
Q18.	D
Q19.	С
Q20.	В

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Bachelor of Engineering

Curriculum Scheme: Electronics & Telecommunication (Rev2019 'C' Scheme)

Examination: **DSE** Semester **III**

Course Code: ECC302 and Course Name: Electronic Devices & Circuits

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	In AC load line, slope is generally	
Option A:	Greater than slope of DC load line	
-	•	
Option B:	Less than slope of DC load line	
Option C:	Same as that of DC load line	
Option D:	Greater than as well as less than slope of DC load line	
2.	In AC load line ,the slope is represented by an equation is	
Option A:	Y = -1 / Rac	
Option B:	Y = 1 / Rac	
Option C:	Y = -1 / RL	
Option D:	Y = 1 / RL	
3.	A transistor with $\beta = 120$ is biased to operate at a dc collector current of 1.2 mA.	
	Find the value of $r\pi$.	
Option A:	2.2 ΚΩ	
Option B:	2.35 ΚΩ	
Option C:	2.5 ΚΩ	
Option D:	2.45 ΚΩ	
4.	The SI units of transconductance is	
Option A:	Volt/ Ampere	
Option B:	Ohm	
Option C:	Siemens	
Option D:	Ampere/ Volt	
Option D.	Timpere, voic	
5.	The enhancement MOSFET is	
Option A:	Normally open MOSFET	
Option B:	Useful as a very good constant voltage source	
Option C:	Widely used because of easy in its fabrication	
Option D:	Normally close MOSFET	
6.	A CS amplifier has a voltage gain of	
Option A:	$g_m(r_d R_D)$	
Option B:	g _m r _d	
Option C:	gm Rs	

Option D:	gm rs / (1+gm rs)	
7.	For which of the following frequency region(s) can the coupling and bypass	
capacitors no longer be replaced by the short-circuit approximation		
Option A:	Low-frequency	
Option B:	Mid-frequency	
Option C:	High-frequency	
Option D:	All frequency	
0		
8.	What is the normalized gain expressed in dB for the cut-off frequencies?	
Option A:	-3 dB	
Option B:	+3 dB	
Option C:	-6 dB	
Option D:	−20 dB	
9.	The larger capacitive elements of the design will determine the	
9.	frequency.	
Option A:	Lower cut off	
Option B:	Middle	
Option C:		
	Higher cut off	
Option D:	Intermediate	
10.	What is the ratio of the capacitive reactance XCS to the input resistance Ri of the	
	input RC circuit of a single-stage BJT amplifier at the low-frequency cut-off?	
Option A:	0.25	
Option B:	0.50	
Option C:	0.75	
Option D:	1.0	
11.	Which of the lower cutoff -frequency determined by Cin, Cout, and CE will be the predominant factor in determining the low-frequency response for the complete	
	system?	
Option A:	Lowest	
Option B:	Middle	
Option C:	Highest	
Option D:	Average	
12.	Which of the following elements is (are) important in determining the gain of the	
12.	system in the high-frequency region?	
Option A:	Coupling capacitances	
Option B:	Bypass capacitances	
Option C:	Transconductance	
Option D:	Inter-electrode, wiring and miller effect capacitances	
-		
13.	In a multistage amplifier, the overall frequency response is determined by the	
Option A:	Frequency response of each stage depending on the relationships of the critic frequencies.	
Option B:	Frequency response of the first amplifier.	
Option C:	Frequency response of the last amplifier.	

Option D:	Lower critical frequency of the first amplifier and the upper critical frequency of the final amplifier.	
14.	In the mid frequency region, coupling capacitor acts as a circuits and stray	
17.	capacitance acts as a circuits.	
Option A:	Open, Short	
Option B:	Short, Open	
Option C:	Short, Short	
Option D:	Open, Open	
15.	Differential Amplifier amplifies	
Option A:	Input signal with higher voltage	
Option B:	Input voltage with smaller voltage	
Option C:	Sum of the input voltage	
Option D:	Difference between the input voltage	
16.	If output is measured between two collectors of transistors, then the Differential	
	amplifier with two input signal is said to be configured as	
Option A:	Dual Input Balanced Output	
Option B:	Dual Input Unbalanced Output	
Option C:	Single Input Balanced Output	
Option D:	Single Input Unbalanced Output	
17.	To increase the value of CMRR, which circuit is used to replace the emitter	
17.	resistance R _E in differential amplifiers?	
Option A:	Constant current bias	
Option B:	Resistor in parallel with R _E	
Option C:	Resistor in series with R _E	
Option D:	Diode in parallel with R _E	
opnon 2.	2 Tout in paramet with re-	
18.	The input stage of an op amp is usually a	
Option A:	Swamped amplifier	
Option B:	Class B push-pull amplifier	
Option C:	CE amplifier	
Option D:	Differential amplifier	
10		
19.	Class power amplifier has highest collector efficiency	
Option A:	A	
Option B:	B	
Option C:	C	
Option D:	AB	
20.	The maximum efficiency of transformer coupled class A power amplifier is	
Option A:	78.5 %	
Option B:	50%	
Option C:	30%	
Option D:	25%	

Q2	Solve any Two Questions out of Three 10 marks each	
A	Explain the concept of multistage amplifier with advantage, disadvantage and application.	
	For the circuit shown in Fig. 1, Transistor parameters are $Kn = 1 \text{ mA/V}^2$, Vtn = 0.7 V, $Cgs = 2 \text{ pF}$, $Cgd = 0.2 \text{ pF}$, $\lambda = 0$, find the mid band voltage gain, miller capacitance and upper cut-off frequency.	
В	100x 14F 100x 14F 1MF 1MF 100x 1MF 1MF 100x 100x 10x 10x 10x 10x 10x	
C	Draw a small signal equivalent structure of Diff-amp and derive the equation for its CMRR.	

Q3.	Solve any Two Questions out of Three	10 marks each
A	Derive the equation of Av, Zi and Zo of CE amplifier using	g un-bypass R _E .
	Explain the effects of coupling, bypass capacitor and parasi	itic capacitor on
В	frequency response of single stage amplifier.	
С	Draw a neat diagram of a transformer coupled Class A pow explain its working, hence find its efficiency.	ver amplifier and

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev 2019 Examination: SE, Semester: III

Course Code: ECC302 and Course Name: Electronic Devices and Circuits

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	С
Q2.	D
Q3.	В
Q4	В
Q5	A
Q6	В
Q7	D
Q8.	A
Q9.	В
Q10.	С
Q11.	A
Q12.	В
Q13.	В
Q14.	A
Q15.	В
Q16.	С
Q17.	A
Q18.	В
Q19.	В
Q20.	С