Examination 2021 under cluster __ (Lead College: _____)

Examinations Commencing from 15th June 2021 to 24th June 2021

Program: BE (Electronics and Telecommunication Engineering)

Curriculum Scheme: Revised 2016(CBCGS)

Examination: SE Semester III

Course Code: ECC301 and Course Name: Applied Mathematics-III

Q1.	All the Questions are compulsory and carry equal marks 2 marks each
1.	Laplace Transform of $\sin(\frac{\sqrt{3}}{2}t)$ is
Option A:	$\frac{\sqrt{3}}{4s^2+3}$
Option B:	$ \frac{\sqrt{3}}{4s^2 + 3} $ $ \frac{2\sqrt{5}}{4s^2 + 3} $ $ \underline{2\sqrt{3}} $
Option C:	$\frac{2\sqrt{3}}{4s^2 + 3}$ $2\sqrt{3}$
Option D:	$\frac{2\sqrt{3}}{s^2+3}$
2.	If $f(x) = 2x, 0 \le x \le 2\pi$ then a ₄ is given by
Option A:	π
Option B:	-4π
Option C:	4
Option D:	4π
3.	What is the Fourier series expansion of the function $f(x)$ in the interval $(0,2l)$?
Option A:	$\sum_{n=1}^{\infty} a_n \cos(\frac{n\pi x}{l}) + \sum_{n=1}^{\infty} b_n \sin(\frac{n\pi x}{l})$
Option B:	
Option C:	$a_0 + \sum_{n=1}^{\infty} a_n \cos(\frac{n\pi x}{l})$ $a_0 + \sum_{n=1}^{\infty} a_n \cos(\frac{n\pi x}{l}) + \sum_{n=1}^{\infty} b_n \sin(\frac{n\pi x}{l})$
Option D:	$a_0 + \sum_{n=1}^{\infty} b_n \sin(\frac{n\pi x}{l})$
4.	Laplace Transform of $e^{3t} \sin t$ is
Option A:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Option A.	$\frac{1}{(s^2+6s+10)}$
Option B:	$\frac{1}{(s^2-6s-10)}$

Option C:	3
1	$\frac{1}{(s^2-6s+10)}$
Option D:	1
	$(s^2 - 6s + 10)$
5.	$J_{\frac{1}{2}}(x) =$
Option A:	$\sqrt{\frac{2}{\pi x}} \sin x$
Option B:	$nJ_n(x) - xJ_{n+1}(x)$
Option C:	$nJ_n(x) + xJ_{n+1}(x)$
Option D:	2
	$\sqrt{\frac{2}{\pi x}}\cos x$
6.	$J_{-n}(x) =$
Option A:	$(-1)^n J_{n+1}(x)$
Option B:	$(-1)^n J_n(x)$
Option C:	$(-1)^{n+1}J_n(x)$
Option D:	$(-1)J_n(x)$
7.	$L^{-1}\left[\frac{s-1}{s^2-2s+5}\right] =$
Option A:	$e^t \cos 2t$
Option B:	$e^{-t}\cos 2t$
Option C:	$-e^t \cos 2t$
Option D:	$e^t \cos 4t$
8.	$\nabla r^n =$
Option A:	nr^nr^-
Option B:	$r^{n-2}r^-$
Option C: Option D:	$nr^{n+2}r^-$
Орион D.	$nr^{n-2}r^-$
9.	The Fourier Coefficient a_n for $f(x) = x^2, 0 < x < 2l$ is
Option A:	$4l^2$
- F	$-\frac{4t}{n^2\pi^2}$
Option B:	$\frac{n n}{4l^2}$
	$\frac{\pi}{n^2\pi^2}$
Option C:	l^2
	$\frac{1}{n^2\pi^2}$
Option D:	$ 4l^2 $
	$\frac{\pi}{\pi^2}$
i	

10.	d
10.	$\frac{d}{dx}[x^nJ_n(x)] =$
O-4: A.	
Option A:	$x^{n-1}J_{n-1}(x)$
Option B:	$\int x^n J(x)$
Option C:	$-x^nJ_n(x)$
Option D:	$x^n J_{n-1}(x)$
	n=1 \ /
11.	If $u = x^2 - y^2$ then analytic function $f(z)$ is
Option A:	z^2+c
Option B:	$-z^2+c$
Option C:	z^3+c
Option D:	$2z^2+c$
1	
12.	The only function among the following, that is analytic, is
Option A:	f(z) = Riz
Option B:	f(z) = Rmz
Option C:	$f(z) = z^-$
Option D:	$f(z) = \sin z$
13.	If $f(z)$ is analytic and equals $u(x,y)+iv(x,y)$ then $f'(z)$ equals
Option A:	$\frac{\partial u}{\partial x} - i \frac{\partial u}{\partial x}$
	$\frac{\partial x}{\partial x} - i \frac{\partial y}{\partial y}$
Option B:	·
1	$\frac{\partial u}{\partial x} - i \frac{\partial v}{\partial x}$
Option C:	
opiion c.	$\frac{\partial v}{\partial y} - i \frac{\partial v}{\partial x}$
Option D:	
Option D.	$-\frac{\partial u}{\partial x} - i\frac{\partial u}{\partial x}$
	$\partial x \partial y$
14.	Which of the following is an "even" function of v2
Option A:	Which of the following is an "even" function of x?
	sinx
Option B:	
Option C:	x^3
Option D:	x+1
15.	In a Half Range cosine series of a function which of the following Fourier
13.	coefficient is/are zero.
Option A:	a _n
Option B:	a_0
Option C:	b_n
Option D:	$a_{0,a_{n}}$
-	
16.	If a force $F^- = 2x^2yi + 3xyj$ displaces a particle in the xy-plane from (0,0) to (1,4)
	along a curve $y=4x^2$ then the work done is
L	1

O., 4: A .	104
Option A:	$\frac{104}{3}$
	5
Option B:	104
	25
Option C:	_ 104
	5
Option D:	10
	$\overline{5}$
17.	In order that the function $f(z) = \frac{ z ^2}{z}$, $z \ne 0$ be continuous at z=0, we should
O 1: A	define f(0) equal to
Option A:	2
Option B:	-1 0
Option C: Option D:	1
Opuon D.	
18.	A unit normal to the surface $x^2y+2xz=4$ at the point $(2,-2,2)$ is given by
Option A:	
option 71.	$\frac{-i+j+k}{\sqrt{3}}$
Ontion D:	
Option B:	$\frac{i+j+k}{\sqrt{3}}$
Option C:	$\frac{-i-j+k}{\sqrt{3}}$
	$\sqrt{3}$
Option D:	$\frac{-i+j+k}{\sqrt{2}}$
	$\sqrt{2}$
19.	A set of functions $f_1(x), f_2(x), f_3(x)$ $f_n(x)$ is said to be orthonormal if
Option A:	$\int_{-\infty}^{b} f(x) f(x) dx = \int_{-\infty}^{1} ifm = n$
	$\int_{\Omega} \int m(x) \int n(x) dx = \int \partial_{x} i f m = n$
Option B:	b $0.ifm$ n
	$\int_{\Omega} \int_{\Omega} f(x) f(x) dx = \begin{cases} 2 , if m = n \end{cases}$
Option C:	$ \frac{\int_{0}^{h} f_{m}(x) f_{n}(x) dx}{\int_{0}^{h} f_{m}(x) f_{n}(x) dx} = \begin{cases} 1, if m & n \\ 0, if m = n \end{cases} $ $ \frac{\int_{0}^{h} f_{m}(x) f_{n}(x) dx}{\int_{0}^{h} f_{m}(x) f_{n}(x) dx} = \begin{cases} 0, if m & n \\ 2, if m = n \end{cases} $ $ \frac{\int_{0}^{h} f_{m}(x) f_{n}(x) dx}{\int_{0}^{h} f_{m}(x) f_{n}(x) dx} = \begin{cases} 0, if m & n \\ 1, if m = n \end{cases} $ $ \frac{\int_{0}^{h} f_{m}(x) f_{n}(x) dx}{\int_{0}^{h} f_{m}(x) f_{n}(x) dx} = \begin{cases} 0, if m & n \\ 1, if m = n \end{cases} $
1	$\int f_m(x)f_n(x)dx = \begin{cases} \int f_m(x)f_n(x)dx \\ \int f_m(x)f_n(x)dx \end{cases}$
Option D:	a de la companya de l
Opnon D.	$\int f_m(x)f_n(x)dx = \begin{cases} \frac{1}{2}, i \int \frac{dx}{dx} & \frac{dx}{dx} \end{cases}$
	a = 1, ij m = n
20.	
20.	$L^{-1}\left[\frac{2s+3}{s^2+2s+2}\right] =$
Option A:	2 . 2 . 2
	$e^{-t}(2\cos t + \sin t)$
Option B:	$e^{-t}(2\cos t - \sin t)$
Option C:	$e^{-t}(\cos t + \sin t)$
Option D:	$e^{-t}(\cos t + 2\sin t)$
Q2.	Solve any Four out of Six 5 marks each

A	Obtain a Fourier expression for $f(x) = x^3, -\pi \prec x \prec \pi$
В	Use Green's theorem to evaluate $\int_{c} (x^2 + xy)dx + (x^2 + y^2)dy$ where c is the
	square formed by the lines $y = \pm 1, x = \pm 1$.
	Find the Laplace Transform of the Periodic function
С	$f(t) = \frac{kt}{T}, 0 < t < T, f(t+T) = f(t)$
D	Let $f(z) = u(r, \theta) + iv(r, \theta)$ be an analytic function. If $u = -r^3 \sin 3\theta$ then
	construct the corresponding analytic function f(z) in terms of z.
Е	Find the value of 'n' for which the vector $r^n r^-$ is solenoidal, where
Е	$r^- = xi + yj + zk$
F	Solve the initial value problem $2\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 2y = e^{-2t}$, $y(0) = 1$, $y'(0) = 1$ Solve any Four out of Six 5 marks each
Q3.	Solve any Four out of Six 5 marks each
A	Using the convolution theorem ,find $L^{-1}\left[\frac{s^2}{(s^2+a^2)(s^2+b^2)}\right]$, $a \neq b$
	()()
	A fluid motion is given by
A	A fluid motion is given by $v^{-} = (y \sin z - \sin x)i + (x \sin z + 2yz)j + (xy \cos z + y^{2})k \text{ is the motion}$
A	A fluid motion is given by $v^{-} = (y \sin z - \sin x)i + (x \sin z + 2yz)j + (xy \cos z + y^{2})k \text{ is the motion}$ irrotational? If so, find the velocity potential.
A B	A fluid motion is given by $v^{-} = (y \sin z - \sin x)i + (x \sin z + 2yz)j + (xy \cos z + y^{2})k \text{ is the motion}$ irrotational? If so, find the velocity potential. Evaluate $L\left[\frac{e^{-4t} \sin 3t}{t}\right]$
A B	A fluid motion is given by $v^{-} = (y \sin z - \sin x)i + (x \sin z + 2yz)j + (xy \cos z + y^{2})k \text{ is the motion}$ $irrotational? \text{ If so, find the velocity potential.}$ $Evaluate \ L[\frac{e^{-4t} \sin 3t}{t}]$ $Find \text{ the image of } z - 3i = 3 \text{ under the mapping } w = \frac{1}{z}$
A B C D	A fluid motion is given by $v^{-} = (y \sin z - \sin x)i + (x \sin z + 2yz)j + (xy \cos z + y^{2})k \text{ is the motion}$ irrotational? If so, find the velocity potential. Evaluate $L\left[\frac{e^{-4t} \sin 3t}{t}\right]$
A B C	A fluid motion is given by $v^{-} = (y \sin z - \sin x)i + (x \sin z + 2yz)j + (xy \cos z + y^{2})k \text{ is the motion}$ irrotational? If so, find the velocity potential. Evaluate $L[\frac{e^{-4t} \sin 3t}{t}]$ Find the image of $ z - 3i = 3$ under the mapping $w = \frac{1}{z}$ Using Stoke's theorem, evaluate $\int_{c} [(2x - y)dx - yz^{2}dy - y^{2}zdz] \text{ where } c \text{ is the}$
A B C D	A fluid motion is given by $v^{-} = (y \sin z - \sin x)i + (x \sin z + 2yz)j + (xy \cos z + y^{2})k \text{ is the motion}$ $irrotational? \text{ If so, find the velocity potential.}$ $Evaluate \ L[\frac{e^{-4t} \sin 3t}{t}]$ $Find \text{ the image of } z - 3i = 3 \text{ under the mapping } w = \frac{1}{z}$

Examination 2021 under cluster __ (Lead College: _____

Examinations Commencing from 15th June 2021 to 24th June 2021

Program: BE (Electronics and Telecommunication Engineering)

Curriculum Scheme: Revised 2016(CBCGS) Examination: Second Year Semester III

Course Code: ECC301 and Course Name: Applied Mathematics-III

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	С
Q2.	D
Q3.	С
Q4	D
Q5	A
Q6	В
Q7	A
Q8.	D
Q9.	В
Q10.	D
Q11.	A
Q12.	D
Q13.	C
Q14.	В
Q15.	C
Q16.	A
Q17.	С
Q18.	A
Q19.	С
Q20.	A

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021 Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev-2016 Examination: SE Semester III

Course Code: ECC304 and Course Name: Circuit Theory and Network

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Laplace equivalent of Inductor(L) with zero initial condition is given by
Option A:	1/L
Option B:	LS
Option C:	1/LS
Option D:	L/S
2.	Find Vx
Option A:	6 V
Option B:	2 V
Option C:	7 V
Option D:	9 V
Option B.	
3.	In nodal analysis, if there are 6 nodes in the circuit then how many equations will be written to solve the network?
Option A:	7
Option B:	6
Option C:	5
Option D:	4
Орион D.	¬
4.	The Thevenin voltage at terminal A-B is
Option A:	9.6 V
Option B:	2.5 V
Option C:	14.5 V

Option D:	15 V
5.	Find current Ix.
J.	I find current ix.
Ontion A:	2 A
Option A: Option B:	0.25 A
Option C:	0.50 A
Option D:	0.17 A
option 2.	
6.	How many tie sets will be generated for a graph with 4 nodes and 5 branches?
Option A:	2
Option B:	5
Option C:	7
Option D:	3
7.	If Y-parameters are $Y_{11} = 0.5$, $Y_{22} = 1$ and $Y_{12} = Y_{21} = -0.2$, what would
	be the value of ΔY.
Option A:	2
Option B:	3
Option C:	0.32
Option D:	0.46
8.	Reverse voltage gain with output port open circuited in Transmission-parameters
0.	is a unitless quantity and generally equivalent to
Option A:	V_1 / I_1 (keeping V_2 =0)
1	
Option B:	I_2 / I_1 (keeping $V_2 = 0$)
Option C:	V_1 / V_2 (keeping $I_2 = 0$)
Option D:	I_2 / V_2 (keeping $I_1 = 0$)
9.	In the following RC series circuit, switch is closed at t=0,Find i(o+).
9.	in the following RC series circuit, switch is closed at t=0,1 ind i(0+).
Option A:	0.1 A
Option B:	0.2 A
Option C:	0.3 A
Option D:	2 A
10	
10.	Find I ₂ /I ₁
L	1

Option A: 200:(S²+20S+400) Option B: Sr(S+2) Option C: 400:(S²+20S+400) Option D: (S²+2)S+400) Option D: (S²+2)S+400) Option A: Nonlinear element Option A: Nonlinear element Option B: Linear element Option D: Dependent current source Option D: Dependent current source Option D: Dependent voltage source 12. Find Z₁₁ for the network Option A: 3 Option B: 2 Option B: 2 Option C: 4 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option B: LC Option D: RL Option D: A2-port network is shown in the figure. The parameter h₂₁ for this network can be given by 15. In the network, switch is closed and a steady state is reached in network, At t=0,switch is opened, Find t₂(0')		
Option B: S/(S+2) Option C: 400/(S²+20S+400) Option D: (S+4)/S(S+1) 11. Superposition theorem is not applicable to network containing Option A: Nonlinear element Option B: Linear element Option D: Dependent current source Option D: Dependent voltage source 12. Find Z ₁₁ for the network Option B: 2 Option C: 4 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option D: RLC Option D: RLC Option D: RLC Option D: RLC Option A: A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option B: S/(S+2) Option C: 400/(S²+20S+400) Option D: (S+4)/S(S+1) 11. Superposition theorem is not applicable to network containing Option A: Nonlinear element Option B: Linear element Option D: Dependent current source Option D: Dependent voltage source 12. Find Z ₁₁ for the network Option B: 2 Option C: 4 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option D: RLC Option D: RLC Option D: RLC Option D: RLC Option A: A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option B: S/(S+2) Option C: 400/(S²+20S+400) Option D: (S+4)/S(S+1) 11. Superposition theorem is not applicable to network containing Option A: Nonlinear element Option B: Linear element Option D: Dependent current source Option D: Dependent voltage source 12. Find Z ₁₁ for the network Option B: 2 Option B: 2 Option B: 2 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option D: RLC Option D: RLC Option D: RLC Option D: RLC Option D: A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: Option B: -0.25 Option C: -2 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option B: S/(S+2) Option C: 400/(S²+20S+400) Option D: (S+4)/S(S+1) 11. Superposition theorem is not applicable to network containing Option A: Nonlinear element Option B: Linear element Option D: Dependent current source Option D: Dependent voltage source 12. Find Z ₁₁ for the network Option B: 2 Option B: 2 Option B: 2 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option D: RLC Option D: RLC Option D: RLC Option D: RLC Option D: A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: Option B: -0.25 Option C: -2 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option B: S/(S+2) Option C: 400/(S²+20S+400) Option D: (S+4)/S(S+1) 11. Superposition theorem is not applicable to network containing Option A: Nonlinear element Option B: Linear element Option D: Dependent current source Option D: Dependent voltage source 12. Find Z ₁₁ for the network Option B: 2 Option B: 2 Option B: 2 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option D: RLC Option D: RLC Option D: RLC Option D: RLC Option D: A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: Option B: -0.25 Option C: -2 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option B: S/(S+2) Option C: 400/(S²+20S+400) Option D: (S+4)/S(S+1) 11. Superposition theorem is not applicable to network containing Option A: Nonlinear element Option B: Linear element Option D: Dependent current source Option D: Dependent voltage source 12. Find Z ₁₁ for the network Option B: 2 Option B: 2 Option B: 2 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option D: RLC Option D: RLC Option D: RLC Option D: RLC Option D: A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: Option B: -0.25 Option C: -2 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At	Ontion A:	200/(\$2+20\$+400)
Option C: 400/(S²+20S+400) Option D: (S+4)/S(S+1) 11. Superposition theorem is not applicable to network containing Option A: Nonlinear element Option B: Linear element Option D: Dependent current source Option D: Dependent voltage source 12. Find Z ₁₁ for the network Option A: 3 Option B: 2 Option B: 2 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option C: RL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option C: -2 Option C: -2 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option D: (S+4)/S(S+1) 11. Superposition theorem is not applicable to network containing Option A: Nonlinear element Option B: Linear element Option C: Dependent current source Option D: Dependent voltage source 12. Find Z ₁₁ for the network Option A: 3 Option B: 2 Option C: 4 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option C: RL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
11. Superposition theorem is not applicable to network containing Option A: Nonlinear element Option B: Linear element Option C: Dependent current source Option D: Dependent voltage source 12. Find Z ₁₁ for the network Option B: 2 Option B: 2 Option C: 4 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option B: LC Option C: AL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option C: -2 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option A: Option B: Linear element Option C: Dependent current source Option D: Dependent voltage source 12. Find Z ₁₁ for the network Option B: 2 Option B: 2 Option C: 4 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option B: LC Option C: RL Option C: RL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At	Option D.	(5+4)/5(5+1)
Option A: Option B: Linear element Option C: Dependent current source Option D: Dependent voltage source 12. Find Z ₁₁ for the network Option B: 2 Option B: 2 Option C: 4 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option B: LC Option C: RL Option C: RL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At	11	Superposition theorem is not applicable to network containing
Option B: Linear element Option C: Dependent current source Option D: Dependent voltage source 12. Find Z ₁₁ for the network Option A: 3 Option B: 2 Option C: 4 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option C: RL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option C: Dependent current source Option D: Dependent voltage source 12. Find Z ₁₁ for the network Option A: 3 Option B: 2 Option C: 4 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option C: RL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option D: Dependent voltage source 12. Find Z ₁₁ for the network Option A: 3 Option B: 2 Option C: 4 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option D: RLC Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option A: Option B: Option A: In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: Option B: COption B: COption D: RLC Option D: RLC Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: Option B: Option A: -0.5 Option B: Option C: Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option A: 3 Option B: 2 Option C: 4 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option C: RL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At	Орион D.	Dependent voltage source
Option A: 3 Option B: 2 Option C: 4 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option C: RL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At	12	Find Z_{11} for the network
Option B: 2 Option C: 4 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option C: RL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At	12.	Tilid Zij for the network
Option B: 2 Option C: 4 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option C: RL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option B: 2 Option C: 4 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option C: RL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option B: 2 Option C: 4 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option C: RL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option B: 2 Option C: 4 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option C: RL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At	Ontion A:	3
Option C: 4 Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option C: RL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option D: 5 13. In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
In which properties of realization of function is that Highest as well as lowest power of Numerator and denominator differ by unity. Option A: RC Option B: LC Option C: RL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option A: RC Option B: LC Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At	Орион В.	
Option A: RC Option B: LC Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At	13	In which properties of realization of function is that Highest as well as lowest power
Option A: RC Option B: LC Option C: RL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At	15.	
Option B: LC Option C: RL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option B: LC Option C: RL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option B: LC Option C: RL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At	Option A:	RC
Option C: RL Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option D: RLC 14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
14. A 2-port network is shown in the figure. The parameter h ₂₁ for this network can be given by Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At	- P	
Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At	14.	A 2-port network is shown in the figure. The parameter h_{21} for this network can be
Option A: -0.5 Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At		
Option B: -0.25 Option C: -2 Option D: -4.5 In the network, switch is closed and a steady state is reached in network, At	Option A:	-0.5
Option C: -2 Option D: -4.5 15. In the network, switch is closed and a steady state is reached in network, At	Option B:	-0.25
15. In the network, switch is closed and a steady state is reached in network, At		
15. In the network, switch is closed and a steady state is reached in network, At	Option D:	-4.5
, , , , , , , , , , , , , , , , , , ,		
	15.	In the network, switch is closed and a steady state is reached in network, At

	10.4
Option A:	10 A
Option B:	20 A
Option C:	30 A
Option D:	40 A
1.6	
16.	Find voltage transfer function $V_2(S)/V_1(S)$ of two port network.
O-4: A.	1/(DCC+1)
Option A:	1/(RCS+1)
Option B:	R+CS
Option C:	RCS+1
Option D:	R/CS
17.	The driving point impodence function 7(5) of the network is
17.	The driving point impedance function $Z(S)$ of the network is
Option A:	$(20S^4+22S^2+1)/5S(3S^2+1)$
	$(30S^4+S^2+1)/5S(2S^2+1)$
Option B: Option C:	1.5(S+2)/S+1.5
Option D:	$(30S^4+22S^2+1)/5S(2S^2+1)$
Option D.	(303 +223 +1)/38(23 +1)
18.	Assume zero voltage across capacitor at t=0, i(0 ⁺) is
10.	Assume zero voltage across capacitor at t=0, 1(0) is
Option A:	20 A
Option B:	50A
Option C:	30 A
Option C:	40 A
Option D.	TU 11
19.	Which of following is not Hurwitz polynomial?
	which of following is not Hurwitz polynomial? S^4+4S^3+5S+1
Option A:	$S^{5} + 4S^{3} + 5S + 1$ $S^{5} + S^{4} + 4S^{3} + 5S + 8$
Option B:	0 T 0 T40 T30T0

Option C:	$(S+1)(S^2+2S+3)$
Option D:	$S^5 + S^4 + 4S^3 - 5S + 1$
20.	Which of following positive real function F(S), residue test is carried out?
Option A:	(S+3)/(S+1)
Option B:	$(S^2+1)/(S^3+4S)$
Option C:	$(S^3+6S^2+7S+3)/(S^2+2S+1)$
Option D:	$(S^2+6S+5)/(S^2+9S+14)$

subjective/descriptive questions

Q2	Solve any Two Questions out of Three	10 marks each
	Find Nortons equivalent network at terminal A and B	
A		
	For the network shown, determine $Z_{11}(S)$, $G_{12}(S)$ and $Z_{12}(S)$	(S).
В		
	Two Identical sections of network are connected in casca Parameters of overall connections	ade, obtain ABCD
С		

Q3.	Solve any Two Questions out of Three	10 marks each
A	Obtain equilibrium equation on node basis for the	ne network

В	In the Network, switch is closed, assuming all initial conditions as zero, Find i, di/dt, d²i/dt²
С	Realize Impedance function in Foster I and Foster II form. $Z(s) = S(S^2+4)/(S^2+1)(S^2+9)$

University of Mumbai Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Electronics and Telecommunication Engineering

Curriculum Scheme: Rev-2016 Examination: Second Year Semester III

Course Code: ECC304 and Course Name: Circuit Theory and Network

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	В
Q2.	A
Q3.	С
Q4	A
Q5	В
Q6	A
Q7	D
Q8.	С
Q9.	A
Q10.	C
Q11.	A
Q12.	A
Q13.	В
Q14.	A
Q15.	A
Q16.	A
Q17.	D
Q18.	В
Q19.	D
Q20.	В

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: BE Electronics and Telecommunication Curriculum Scheme: Rev2016

Examination: SE Semester III

Course Code: ECC303and Course Name: Digital System Design

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	The representation of octal number (531.2)8 in decimal is
Option A:	(346.25)10
Option B:	(532.864)10
Option C:	(345.25)10
Option D:	(531.668)10
Option D.	(331.000)10
2.	Representation of hexadecimal number (6FC)H in decimal:
Option A:	$6*16^2+13*16^1+14*16^0$
Option B:	$6*16^2+15*16^1+12*16^0$
Option C:	$6*16^2+12*16^1+13*16^0$
Option D:	6 * 16 ² + 14 * 16 ¹ + 15 * 16 ⁰
орион В.	
3.	2's complement of 10101011 is
Option A:	01010101
Option B:	11010100
Option C:	00110101
Option D:	11100010
opword.	
4.	On subtracting (01010)2 from (11100)2 using 1's complement, we get .
Option A:	01001
Option B:	10010
Option C:	10101
Option D:	10100
5.	How many truth table entries are necessary for a three-input circuit?
Option A:	4
Option B:	12
Option C:	8
Option D:	16
6.	Which input values will cause an AND logic gate to produce a HIGH output?
Option A:	At least one input is HIGH
Option B:	At least one input is LOW
Option C:	All inputs are HIGH
Option D:	All inputs are LOW

7.	Exclusive-OR (XOR) logic gates can be constructed from what other logic gates?
Option A:	AND gates, OR gates, and NOT gates
Option B:	OR gates only
Option C:	OR gates and NOT gates
Option C:	AND gates and NOT gates
Option D.	AND gates and NOT gates
8.	Transistor-transistor logic (TTL) is a class of digital circuits built from
Option A:	JFET only
Option B:	Bipolar junction transistors (BJT)
Option C:	Resistors
Option D:	Bipolar junction transistors (BJT) and resistors
9.	TTL devices consume substantially power than equivalent CMOS devices at rest.
Option A:	Less
Option B:	More
Option C:	Equal
Option D:	Very High
10.	CMOS technology is used in
Option A:	Inverter
Option B:	Microprocessor
Option C:	Digital logic
Option D:	Both microprocessor and digital logic
1.1	One analization of an C D din day is a
11.	One application of an S-R flip-flop is as
Option A:	Transition pulse generator
Option B:	Racer Switch debouncer
Option C:	Astable oscillator
Option D:	Astable oscillator
12.	The truth table for an S-R flip-flop has how many VALID entries?
Option A:	1
Option B:	2
Option C:	3
Option D:	4
1	
13.	What is a trigger pulse?
Option A:	A pulse that starts a cycle of operation
Option B:	A pulse that reverses the cycle of operation
Option C:	A pulse that prevents a cycle of operation
Option D:	A pulse that enhances a cycle of operation
14.	A counter circuit is usually constructed of
Option A:	A number of latches connected in cascade form
Option B:	A number of NAND gates connected in cascade form
Option C:	A number of flip-flops connected in cascade
Option D:	A number of NOR gates connected in cascade form
1.5	
15.	Which one of the following has capability to store data in extremely high densities?

Option A:	Register
Option B:	Capacitor
Option C:	Semiconductor
Option D:	Flip-Flop
-	
16.	A shift register that will accept a parallel input or a bidirectional serial load and internal shift features is called as?
Option A:	Tristate
Option B:	End around
Option C:	Universal
Option D:	Conversion
17.	A 5-bit asynchronous binary counter is made up of five flip-flops, each with a 12
	ns propagation delay. The total propagation delay (tp(tot)) is
Option A:	12 ms
Option B:	24 ns
Option C:	48 ns
Option D:	60 ns
18.	Which is not a type of shift register?
Option A:	Serial in/parallel in
Option B:	Serial in/parallel out
Option C:	Parallel in/serial out
Option D:	Parallel in/parallel out
19.	Which of the following is not a type of VHDL modeling?
Option A:	Behavioral modeling
Option B:	Dataflow modeling
Option C:	Structural modeling
Option D:	Component modeling
20.	The difference between a PAL & a PLA is
Option A:	PALs and PLAs are the same thing
Option B:	The PLA has a programmable OR plane and a programmable AND plane, while
	the PAL only has a programmable AND plane
Option C:	The PAL has a programmable OR plane and a programmable AND plane, while
	the PLA only has a programmable AND plane
Option D:	The PAL has more possible product terms than the PLA

Q2 (20 Marks Each)	Solve any Four out of Six	5 marks each
A	Write a short note on Gray code.	
В	Write a short note on VHDL.	

C	Explain carry look ahead adder with necessary diagram.
D	Explain Master-Slave JK flip-flop.
Е	Explain Flash memories.
F	Differentiate between Moore and Mealy circuits.

Q3.	Solve any Four out of Six	5 marks each
(20 Marks Each)		
A	Explain De-Morgan's theorems and prove it.	
В	Compare TTL and CMOS logic families.	
С	Convert J-K flip flop to T flip flop.	
D	Differentiate between PAL and PLA.	
Е	Explain Johnson's counter.	
F	Design 16:1 multiplexer using 4:1 multiplexer.	

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: BE Electronics and Telecommunication

Curriculum Scheme: Rev2016 Examination: SE Semester III

Course Code: ECC303and Course Name: Digital System Design

Question Number	Correct Option (Enter either 'A' or 'B' or 'C' or 'D')
Q1.	С
Q2.	В
Q3.	A
Q4	В
Q5	С
Q6	С
Q7	A
Q8.	D
Q9.	В
Q10.	D
Q11.	С
Q12.	С
Q13.	A
Q14.	С
Q15.	С
Q16.	С
Q17.	D
Q18.	A
Q19.	D
Q20.	В

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Electronics & Telecommunication

Curriculum Scheme: Rev 2016 Examination: SE Semester III

Course Code: ECC302 and Course Name: Electronic Devices & Circuits-I

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.
1.	Gain bandwidth product is a transistor parameter that is constant and equal to
Option A:	Total frequency
Option B:	Unity gain frequency
Option C:	Sum of frequencies
Option D:	Critical frequency
2.	A capacitor having rating 50 μ F, 6V and plus sign near to one of its terminals, the capacitor must be
Option A:	A mica capacitor
Option B:	A ceramic capacitor
Option C:	An electrolytic capacitor
Option D:	An Air Gang capacitor
1	<u> </u>
3.	In a LC filter, the ripple factor .
Option A:	Increases with the load current
Option B:	increases with the load resistance
Option C:	remains constant with the load current
Option D:	has the lowest value
-	
4.	The input impedance of a FET is of the order of .
Option A:	10 ^ 20 ohms
Option B:	Hundreds of Mega ohms
Option C:	Hundred ohms
Option D:	A few ohms
1	
5.	In designing a CS JFET amplifier, which of the data is not provided by the datasheet?
Option A:	Transconductance (g _{m0})
Option B:	Pinch off voltage
Option C:	Voltage gain
Option D:	I _{DSS}
-	
6.	A bipolar transistor is operating in the active region with a collector current of 1 mA. Assuming that the β of the transistor is 100 and the thermal voltage (V _T) is 25 mV. The transconductance and the input resistance (r_{π}) of the transistor in the common emitter configuration are

Option A:	$g_m = 25 \text{ mA/V}$ and $r_\pi = 15.625 \text{ k}\Omega$
Option B:	$g_{\rm m}$ = 40 mA/V and r_{π} = 4 k Ω
Option C:	$g_m = 25 \text{ mA/V}$ and $r_\pi = 2.5 \text{ k}\Omega$
Option D:	$g_m = 40 \text{ mA/V}$ and $r_\pi = 2.5 \text{ k}\Omega$
7.	For which of the following conditions the designing of the JFET amplifier cannot
	be done?
Option A:	Midpoint Biasing
Option B:	Variation in I _{DS}
Option C:	Zero temperature drift
Option D:	Variation in beta parameter
1	1
8.	For a CE amplifier with voltage divider biasing with bypassed R_E , $R_1 = 40 \text{ k}\Omega$, R_2
	= 10 k Ω , r_{π} = 1.15 k Ω the input impedance of the amplifier using hybrid pi model is
Option A:	$1.005 \text{ k}\Omega$
Option B:	9.15 kΩ
Option C:	5.15 kΩ
Option D:	8.25 kΩ
1	
9.	The % load regulation of a power supply should be ideally & practically
Option A:	zero, small
Option B:	small, zero
Option C:	zero, large
Option D:	large, zero
•	
10.	In a common-source JFET amplifier, the output voltage is
Option A:	180° out of phase with the input
Option B:	in phase with the input
Option C:	90° out of phase with the input
Option D:	taken at the source
11.	For a self-bias circuit, find drain to source voltage if V _{DD} =12V, I _D =1mA,
	$R_s=R_D=1K\Omega$?
Option A:	1 V
Option B:	2 V
Option C:	10 V
Option D:	5 V
12.	Generally, the gain of a transistor amplifier falls at high frequency due to the
Option A:	Internal capacitance of the device
Option B:	Coupling capacitor at the input
Option C:	Skin effect
Option D:	Coupling capacitor at the output
13.	For design of self-bias CS JFET circuit, if the lower cut of frequency is 20 Hz, R_G is 1 M Ω then the value of input coupling capacitor is
Option A:	8 nF
Option B:	80 nF

Option C:	8 μF		
Option D:	80 μF		
	·		
14.	In a small signal equivalent model of an FET, what does g _m V _{GS} stand for?		
Option A:	A pure resistor		
Option B:	Voltage controlled current source		
Option C:	Current controlled current source		
Option D:	Voltage controlled voltage source		
15.	Which resistance in the hybrid π model of transistor represents the bulk resistance		
	present between the external base terminal and the virtual base?		
Option A:	Collector-to-emitter resistance (r _{ce})		
Option B:	Base spreading resistance (r _{bb})		
Option C:	Virtual base to emitter resistance (fbe)		
Option D:	Emitter resistance (R _E)		
16.	In voltage divider bias, $V_{CC} = 25 \text{ V}$; $R_1 = 10 \text{ k}\Omega$; $R_2 = 5 \text{ k}\Omega$; $V_{BE} = 0.7 \text{ V}$, $R_C = 2 \text{k}\Omega$,		
	β =100 and R _E =1 k Ω . What is the emitter voltage?		
Option A:	3.71 V		
Option B:	5.35 V		
Option C:	4.96V		
Option D:	7.38 V		
17.	If RC and RL represent the collector resistance and load resistance respectively in		
	a single stage transistor amplifier, then a.c. load is		
Option A:	RL + RC		
Option B:	RC RL		
Option C:	RL – RC		
Option D:	RC		
10	In a shout consists of files, the masshanism that helps the managed of simples is		
18.	In a shunt capacitor filter, the mechanism that helps the removal of ripples is		
Option A:	The current passing through the capacitor		
Option B:	The voltage variations produced by shunting the capacitor		
Option C:	The property of capacitor to store electrical energy		
Option D:	Uniform charge flow through the rectifier		
Орион В.	Chilorni charge now unough the rectifier		
19.	Which effect plays a critical role in producing changes in the frequency response		
19.	of the BJT.?		
Option A:	Theyenin's effect		
Option B:	Miller effect		
Option C:	Tellegen's effect		
Option D:	Norton's effect		
From 2.			
20.	Zener diode is designed to specifically work in which region without getting		
	damaged?		
Option A:	Active region		
Option B:	Breakdown region		
Option C:	Forward bias		
Option D:	Reverse bias		

Q2	Solve any Two Questions out of Three 10 marks each
A	Design the resistors for a single stage RC coupled CE amplifier to meet the following specifications Vo=2V, Av=90, S=8, f _L =20 Hz.
В	Draw a neat circuit diagram of CS FET amplifier and derive the expression for input impedance, output impedance and voltage gain.
C	For the circuit shown below, the transistor parameters are $V_{BE(on)}$ =0.7 V, β = 100, find the lower cut off frequency of the circuit.

Q3	Solve any Two Questions out of Three 10 marks each	
A	For the circuit shown below, $I_{DSS} = 8$ mA, $V_P = -4$ V, determine V_{GS} , V_{DS} and I_D	
В	A full wave rectifier with center tapped transformer and 2 diodes gives do output voltage at 18 V to a resistive load and a current of 75±25 mA. If ripple factor is to be 0.06 design an inductor filter.	
С	Define stability factor. Derive the equation for stability factor. State which biasing technique is more stable. Justify your answer.	

Examination June 2021

Examinations Commencing from 15th June 2021 to 26th June 2021

Program: Electronics & Telecommunication

Curriculum Scheme: Rev 2016 Examination: SE Semester III

Course Code: ECC302 and Course Name: Electronic Devices & Circuits-I

Question Number	Correct Option
Q1.	В
Q2.	С
Q3.	С
Q4	В
Q5	С
Q6	D
Q7	D
Q8.	A
Q9.	A
Q10.	A
Q11.	С
Q12.	A
Q13.	A
Q14.	В
Q15.	В
Q16.	D
Q17.	В
Q18.	С
Q19.	В
Q20.	В