
(Time: 3 Hours) [Total Marks: 80]

- **N.B.:** (1) Question No. 1 is compulsory.
 - (2) Solve any three questions from the remaining five.
 - (3) Figures to the right indicate full marks.
 - (4) Assume suitable data if necessary and mention the same in answer sheet.
- Q.1 Attempt any 4 questions:
 - (a) Give ideal characteristics of op-amp and give their practical values. [05]
 - (b) Compare linear and switching voltage regulator. [05]
 - (c) Design a circuit for $V_o = V_1 + V_2$ using single op-amp and few resistors. [05]
 - (d) What are the advantages of switch capacitor filters? [05]
 - (e) Explain op-amp as window detector. [05]
- Q.2 (a) With the help of a neat diagram and voltage transfer characteristics explain the working of an inverting Schmitt trigger. Derive the expressions for its threshold levels.
 - (b) Draw a neat circuit diagram of a Wien bridge oscillator using op-amp. Derive its frequency of oscillation. What are the values of *R* and *C* for frequency of oscillation to be 965 Hz?
- Q.3 (a) Draw the circuit diagram of a square and triangular waveform generator using opamp and explain its working with the help of waveforms. [10]
 - (b) The circuit given in Fig. 3(b) is similar to that of internal diagram of IC555 with slight modifications in the internal resistances to value 2R. Analyse this circuit and draw the waveforms at output terminal v_{out} and across the capacitor C. Comment on the duty cycle of output waveform when i) R_A is less than R_B , ii) R_A is equal to R_B , and iii) R_A is greater than R_B .

58022

Page 1 of 2

Paper / Subject Code: 40803 / Linear Integrated Circuits

Q.4	(a)	Design a second order Butterworth high pass filter for cut off frequency of kHz and pass-band gain of AF=2.	[10]
	(b)	With a neat circuit derive an expression for the output of an instrumentation amplifier.	[10]
Q.5	(a)	With neat circuit explain R/2R ladder digital to analog converter.	[10]
	(b)	With the help of a functional block diagram explain the working of voltage regulator LM317 to give an output voltage variable from 6 V to 12 V to handle maximum load current of 500 mA.	[10]
Q.6		Short notes on: (Attempt any four)	
	(a)	Effect of swamping resistor.	[05]
	(b)	Current fold-back protection circuit in voltage regulator.	[05]
	(c)	Voltage to Current converter.	[05]
	(d)	Peak detector circuit.	[05]
	(e)	Working of PLL IC 565.	[05]

58022 Page **2** of **2**

Max.Marks:80

Duration: 3hrs

N.D.	(2)Attempt any three questions out of remaining five.											
	(3) Figures to the right indicate full marks.											
	(4)Assume suitable data if required and mention the same in answer sheet.											
1.	Solve any four	20										
	(a) Why AGC is required in radio receiver?											
	(b) Explain Noise figure and noise factor.	5,35										
	(c) Why IF is selected as 455 KHz in AM?	30.01										
	(d) Explain natural top and flat top sampling	200										
	(e) Compare narrow band FM and wideband FM.											
2.	(a)List the methods used for SSB generation. Explain the third method of SSB generation with suitable diagram.	10										
	(b) The unmodulated carrier power of AM transmitter is 10 Kw and carrier frequency is 2	10										
	MHz. The carrier is modulated to a depth of 50% by an audio signal of 5KHz. Assume											
	$R=1\Omega$.											
	i) Determine the total transmitted power.											
	ii) Determine the SSB power.											
	iii) Percentage of power saving if SSB is transmitted.											
	iv) Draw the frequency spectrum and find the bandwidth.											
3.	(a) Explain FM demodulator using PLL with suitable diagram.	10										
	(b) Explain amplitude limiting and thresholding in detail with its significance.	10										
4.	(a)) Explain Varactor diode modulator ?	10										
	(b) With the help of suitable waveforms explain generation and detection of PPM.	10										
5.	(a) Explain independent side band receiver in detail with block diagram.	10										
8	(b) Compare Amplitude, Frequency and phase modulation.	10										
6.	Write short note on (any four)	20										
	(a) Aliasing error and aperture effect											
	(b) Applications of Pulse communication											
	(c) VSB transmission with its application											
300	(d) Time division Multiplexing (TDM)											
	(e) Low level and high level modulation											

(3 Hours) [Total marks: 80] Question no. 1 is compulsory. Attempt any Three questions from remaining. Q. 1 Answer *any 4* questions from the given questions. 20 Determine energy and power of given signal. a. $x(t) = 3 \cos 5 \Omega ot$ b. Test the given system for linearity, causality, stability and time invariance. $y(t) = x(t^2)$ Find the initial value x(0) and final value $x(\infty)$ of given Z-domain signals. c. $X(Z) = \frac{2Z^{-1}}{1 - 1.8Z^{-1} + 0.8Z^{-2}}$ d. Realize following FIR system with minimum no of multipliers. $h(n) = \{-0.5, 0.8, -0.5\}$ Explain applications of signals and systems in communication. e. f. Give advantage of state space analysis for system analysis. Q.2 a. Perform convolution of $x_1(t)$ and $x_2(t)$ using convolution theorem and sketch 10 resultant waveform. Where $x_1(t) = u(t) - u(t-1)$ $x_2(t) = u(t) - u(t-2)$ 10 b. Find response of LTI system if impulse response of system is h (t) = $2e^{-3t}u(t)$ for input x(t) = $2e^{-5t}u(t)$ using Fourier Transform. Determine inverse Z-transform of the function by using Residue method. Q.3 a. 10 $X(Z) = \frac{3 + 2z^{-1} + z^{-2}}{1 - 3z^{-1} + 2z^{-2}}$ b. List any 4 properties of Z-transform. 04 66563 Page 1 of 2

Paper / Subject Code: 40804 / Signals & Systems

- c. Find response of time invariant system with impulse response $h(n) = \{1, 2, 1, -1\} \text{ to an input signal } x(n) = \{1, 2, 3, 1\}$
- Q.4 a. The state space representation of a discrete time system is given by $A = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \qquad C = \begin{bmatrix} 1 & 3 \end{bmatrix} \qquad D = \begin{bmatrix} 3 \end{bmatrix}$

Derive the transfer function of the system.

b. Find the digital network in direct form I and II for the system described by the 10 difference equation

$$y(n) = x(n)+0.5 x(n-1)+0.4 x(n-2)-0.6 y(n-1)-0.7y(n-2)$$

Q. 5 a. Determine Fourier series representation of the half wave rectifier output given 10 by equation,

$$x(t) = A \sin \Omega$$
ot ; for t=0 to $\frac{T}{2}$
= 0 ; for t= $\frac{T}{2}$ to T

b. Determine Fourier transform of

$$x(t) = 1-t^2$$
 ; for $|t| < 1$
= 0 ; for $|t| > 1$

- Q.6 Write short note on *any two*.
 - a. ROC in Z-transform and Laplace transform.
 - b. Gibbs Phenomenon.
 - c. Relation of ESD, PSD with Auto-correlation.

66563 Page 2 of 2

Q. P. Code: 37525

(3 hours)

Total marks: 80

N.B.: (1) Question **No. 1** is **compulsory**

- (2) Attempt any Three from remaining
- Q1 a) If X_1 has mean 4 and variance 9 & X_2 has mean -2 and variance 4 [5] where X_1 & X_2 are independent, find $E(2X_1 + X_2 3)$ and $V(2X_1 + X_2 3)$.
 - b) Find the extremals of $\int_{x_1}^{x_2} (x + y')y' dx$ [5]
 - c) Verify Cauchy Schwartz inequality for the vectors u = (-4, 2, 1) and [5] v = (8, -4, -2)
 - d) Check whether $A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$ is derogatory or not. [5]
- Q2 a) Using Cauchy's Residue theorem evaluate $\int_C \frac{z-1}{(z+1)^2(z-2)}$ where C is |z|=4
 - b) Show that the extremal of the isoperimetric problem [6] $I[y(x)] = \int_{x_1}^{x_2} (y')^2 dx \text{ subject to the condition } \int_{x_1}^{x_2} y dx = k \text{ is a parabola.}$
 - Is the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ diagonalisable? If so find the diagonal matrix and the transforming matrix.
- Q3 a) Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix}$ [6]

hence find A^{-1}

- b) Check whether the following are subspaces of \mathbb{R}^3 [6]
 - (i) $W = \{(a, 0, 0) \mid a \in \mathbb{R} \}$
 - (ii) $W = \{(x, y, z) \mid x = 1, z = 1, y \in \mathbb{R}\}\$
- c) Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in Taylors & Laurent's series indicating [8] regions of convergence.

Q. P. Code: 37525

Q4 a) Using Rayleigh-Ritz method to solve the boundary value problem [6]

 $I = \int_0^1 (2xy + y^2 - (y')^2) \ dx \ ; \ 0 \le x \le 1 \text{ given } y(0) = y(1) = 0$

- b) If $A = \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix}$ then prove that $3 \tan A = A \tan 3$. [6]
- c) If sizes of 10,000 items are normally distributed with mean 20 cms & [8] standard deviation of 4 cms. Find the probability that an item selected at random will have size:
 - (i) between 18 cms and 23 cms, (ii) above 26 cms
- Q5 a) Find orthonormal basis of \mathbb{R}^3 using Gram-Schmidt process where [6] $S = \{(1,0,0), (3,7,-2), (0,4,1)\}$
 - b) In a factory, machines A, B & C produce 30%, 50% & 20% of the total production of an item. Out of their production 80%, 50% & 10% are defective respectively. An item is chosen at random and found to be defective. What is the probability that it was produced by machine A.
 - c) Evaluate $\int_{-\infty}^{\infty} \frac{dx}{(x^2+4)(x^2+9)}$ [8]
- Q6 a) Evaluate $\int_C \frac{dz}{z^3(z+4)}$ where C is the circle

 (i) |z| = 2 and (ii) |z-3| = 2
 - b) Two unbiased dice are thrown three times, using Binomial distribution [6] find the probability that the sum nine would be obtained (i) once, (ii) twice
 - c) For the following data [8]

	0'0'	100	5,75,00	C.	130	140	150	160	170	180	190	
7	Y	45	51	54	61	66	70	74	78	85	89	
Ť,	NO O	30,017										

Find the coefficients of regression b_{xy} & b_{yx} and the coefficient of correlation (r)

(20)
(15)
(05)
Find its s-over (10)
(10)
s (10) (10)
(15)
(05)
same. (15)
0.2 μF. (05)

57445

ransister type	Pdmax @ ZS*C Wetts	icmax @ 25°C Amps	V des volts d.c.	Vesa voltt d.c.	V _{con} (Sus) wils d.c.	(2x1)	V _{corr} volts d.c.	V _{sto} volu d.s.	T man	D.C		turrent typ.	gais Max		well	Signa 17p.	ž.		Ver max.	CIW	Dera ebon 25°0 W/°0
N 3055	115-5	15-0	1-1	100	60	70	90	7	200	2	0	50	70		5	50	1	20	1-8	1.5	0.7
CN 055	50-0	5-0	1-0	60	50	55	60	5	200	2	5	50	100	- 3	Š	75		25	1.5	3-5	0-4
CN 149	30-0	4-0	1.0	SO	40			8	150	3		50	110		13	60		15	1.2	4-0	0-3
CN 100	\$-0	0.7	0-6	70	60	65	·	6	200	5		90	280		50	90		80	0-9	`35	0-05
C147A	0-25	0-1	0-25	50	45	50	_	6	125	11		180	220		Ľ	220		60	0-9	-	_
N S25(PNP)	0.225	0-5	0.25	85	30	_			100	3			65		_	45		_	_		
C1478	0-25	0-1	0-25	50	45	50		6 -	125	20		290	450	2	(0	330	5	0C	0-9	. —	
rantistor type	hie	hoe	hr	f	tja																
BC 147A	2-7 K Q	18µ &	1.5 ×	10-1	0-4°C/mw	BEW	11- <i>JF</i>	ET MUTU	AL, CH	ARACT	ERIS.	TICS									
en ses (PKP)	14 K Ω	25µ 0	3-2 x	10-		-Vas	volts.	0-0	0-2	0.4	0-6	0-8	1.0	1.2	1.6	2-0	2-4	2.5	3-0	3-5	4-0
BC 147B	4-5 K D	30µ 75			0-4°C/znw-	Yes m	z. mÁ	10	9-0	8-3	7-6	6-8	6-1	5-4	4.2	.3-1	2.2	2-0	1-1	0-5	0.0
ECN 100	500 Ω								_			+		_		 			4	1	
ECN 149	250 Ω		•			los ty	p. MA	7-0	6-0	5-4	4-6	4-0	3.3	2-7	1.7	0.8		0-0	0-0		00
ECH OSS	100 U					los m	in. WA	4-0	3-0	2.2	1-6	1-0	0-5	00	00	0.0	0.0	0-0	0-0	00	0.0
2N 3055	25 Ω																			<u> </u>	
N-Channel JFE															-				٠		'
Туре		V _{os} max. Volts	V _{oo} ! Voi		V _{as} mar. Volts	P _i max. T _i @25°C		max.	i _{nss}		E _{ss} . (typical)		-V, Volts		ier '	r _e	Derate . shave 25°C				
143822		50	5	D	50	300 mW		175°C		1	300	նեն		6		50 KC		2 mW/C		0-59°C/mV	
BFN' 11 (typical)		30	3	<u> </u>	30	300 mW	7	200°C 7 n			5600 μ tJ		2.5			50 KD				0-59" C/mW	