Q. P. Code: 32504

(10)

Duration- 3 Hours Total Marks: 80

Note: 1. Question No. 1 is compulsory.

- 2. Out of remaining questions, attempt any three questions.
- 3. Assume suitable additional data if required.
- 4. Figures in brackets on the right hand side indicate full marks.
- Q.1. (A) A bag contains 7 red and 3 black balls and another bag contains 4 red and 5 black balls. One ball is transferred from the first bag to the second bag and then a ball is drawn from the second bag. If this ball happens to be red, find the probability that a black ball was transferred.
 - (B) Check whether the Random Process given by x(t)=A sin (t) + B cos (t) is ergodic, where A, B are Random Variables normally distributed with zero means and unit variances.
 - (C) Write a short note on "Markov Chain." (05)
 - (D) Find 'P' of Binomial Distribution if n=6 and 9 P(X=4)=P(X=2). (05)
- Q.2. (A) The Power Spectral Density of a WSS Process is given by, (10)

$$S_X(W) = \begin{cases} \frac{b}{a}(a - |w|) & |w| \le a \\ 0 & |w| \ge a \end{cases}$$
 Find the Autocorrelation Function.

(B) Let X1,X2,X3,.... be sequence of Random variables. (10)

Define (i) Convergence almost everywhere

- (ii) Convergence in probability
- (iii) Convergence in distribution
- (iv) Convergence in mean square sense

for the above sequence of Random variable X.

- Q.3. (A) Prove that if input to an LTI system is Wide sense stationary (WSS) process then output is also WSS. (10)
 - (B) A binary communication transmitter sends data as one of two types of signal denoted by 0 or 1. Due to noise, sometimes a transmitted 1 is received as 0 and vice versa. If the probability that a transmitted 0 is correctly received as 0 is 0.9 and the probability that the 1 is received as 1 is 0.8 and if the probability of transmitting 0 is 0.45. Find the probability that 1) A 1 is received. 2) A 0 is received. 3)1 was transmitted given that 1 was received.
 - 4) 0 was transmitted given that 0 was received. 5) The error has occurred.
- **Q.4.** (A) A random variable has the following exponential probability density function: $f(x) = Ke^{-|x|}$. Determine
 - i) The value of K and ii) Mean and variance.
 - (B) The transition probability matrix of Markov Chain is given is given by, (10)

$$P = \begin{array}{cccc} 1 & 2 & 3 \\ 0.5 & 0.4 & 0.1 \\ 0.3 & 0.4 & 0.3 \\ 3 & 0.2 & 0.3 & 0.5 \end{array}$$

Find the limiting probabilities.

Q. P. Code: 32504

Q.5. (A) The joint probability density function of two continuous random variable X and (10)Y is given by,

$$f_{xy}(xy) = \begin{cases} Ce^{-x}e^{-y} & 0 < x < \infty \\ 0 & \text{elsewhere} \end{cases}$$

Find 1) The value of C.

- 2) $f_X(X)$, $f_Y(Y)$.
- 3) $f_{X/Y}(X/Y)$, $f_{Y/X}(Y/X)$. 4) E[Y/X = X] E[X/Y = Y]
- **(B)** Write a short note on "Little's Formula". (10)
- Q.6. (A) State and prove Chapman-Kolmogorov equation. (10)
 - **(B)** Write a short note on the following distributions (10)i) Poisson Distribution and (ii) Gaussian Distribution

(3 Hours)	Total Marks: 80	
N.B.: (1) Question No. 1 is compulsory.	88 8 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
(2)Attempt any three questions out of remain	ing five.	
(3) Figures to the right indicate full marks.		
(4)Assume suitable data if required and ment	ion the same in answer sheet.	
Q.1 Solve any four		(20)
 a) Explain the need of modulation in communicate b) Explain narrow band and wideband FM. c) What do you mean by double spotting in radio d) List the advantages and disadvantages of Digital e) Write a note on aliasing error and aperture effect 	receiver. al communication,	
Q.2 (a) Explain the different types of noise in commun	nication.	(10)
(b) Explain concept of AM wave with related equa	tions	(10)
Q.3 (a) With the help of suitable diagrams explain gen	eration and detection of PWM signal.	(10)
(b) Draw and explain Delta modulation transmitte	er and receiver.	(10)
Q.4 (a) Explain with block diagram and waveform AM	I Super - heterodyne radio receiver.	(10)
(b) What is multiplexing? Explain FDM in detail.		(10)
Q.5 (a) What are different methods of FM generation? reactance modulator?	Draw circuit diagram and explain the	principle of (10)
(b) Explain VSB transmission with its applicatio	ns.	(10)
Q.6 Write a Short notes on (Solve any Four)		(20)
a) Generation and detection of PPM		
b) Phase shift method of AM generation (SSB)		
c) Applications of FM		
d) Sampling Techniques		
e) Delayed AGC		

[Time: Three nours]	T Marks: of
	224,43,30,42,024,30
D1 1 1 1 41	~~ \Q`\Z`\Q`\Q'\Q\\\\\\\\\\\\\\\\\\\\\\\\\\

Please check whether you have got the right question paper.

N.B: 1	. Qı	uestion.No.1	l is	compu	lsory
--------	------	--------------	------	-------	-------

2. Attempt any Three questions from remaining.

Q.1	a)	Explain Program Status word Register of 8051 Microcontroller	04
	b)	Explain Current Program Status Register of ARM7.	04
	c)	Explain Assembler Directives in 8051 microcontroller	04
	d)	Explain Features of ARM7	04
	e)	Explain concept of Cortex-A, the Cortex-R and the Cortex-M.	04
Q.2	a)	Explain the Memory Interfacing of 8051 with 8K*8 Data ROM & 8K*8 PROM	10
	b)	Draw & Explain data flow model of ARM7	10
Q.3	a)	Interface ADC 0808 with 8051 microcontroller, write Assembly language Program to convert analog signal which is available on channel no 6	10
	b)	Write a program for 8051 microcontroller to generate square waveform of 2kHz & 50% duty cycle at pin P1.5. Assume 8051 is operating at frequency 11.059 MHz	10
Q.4	a) _	Explain 8051 Timer operating modes	10
	, ,	Explain ARM interrupts along with Interrupt Vector Table.	10
Q.5	a)	Explain Addressing modes of ARM7 Processor with example in each.	10
	b)	Discuss Digital camera as an Embedded System.	10
Q.6		Write short notes on (Any Two)	
		1. Internal Structure of PORT 1	10
,	34 75	2. SCON in 8051	10
		3. Interrupts in 8051	10

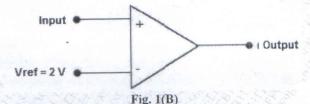
T.E. Sem. P. CBGIS) EXTC RMY.

Dr. 08/08/08

Q.P. Code: 23103

(3 Hours)

[Total Marks: 80]


N.B.: (1) Question No. 1 is compulsory.

- (2) Solve any three questions from the remaining five.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data if necessary and mention the same in answer sheet.

Q.1 Attempt any 4 questions:

[20]

- (A) How does precision rectifier differ from conventional rectifier?
- (B) If the input to the ideal comparator shown in the Fig. 1(B) is a sinusoidal signal of 8 volt peak to peak without any DC component, then check whether the duty cycle of the output of comparator is 33.33% or 25% or 20%. Prove it.

- (C) With neat circuit diagram derive an expression for output current of a voltage to current converter with floating load.
- (D) With the help of a neat circuit diagram explain any one application of PLL 565.
- (E) What is CMRR? How to measure it practically?
- Q.2 (A) Draw the circuit diagram of a square and triangular waveform generator using opamps and explain its working with the help of waveforms. For variation in duty cycle what is the modification needed in the circuit.
 - (B) With the help of a functional block diagram explain the working of voltage regulator LM317 to give an output voltage variable from 5 V to 10 V to handle maximum load current of 500 mA.
- Q.3 (A) Draw a neat circuit diagram of a Wein bridge oscillator using opamp. Derive its frequency of oscillation. What are the values of R and C if its frequency of oscillation is 1 kHz?
 - (B) Design a voltage regulator using IC 723 to give $V_0 = 3 \text{ V}$ to 37 V and output [10] current of 2A.
- Q.4 (A) Design a second order Butterworth high pass filter for cut off frequency of 1 [10] kHz and pass-band gain of AF=2.

Shah And Anchor Kutchhi Engineering College Library Chembur, Mumbai - 400 088.

P.T.O.

Design a counter for counting a sequence 3, 4, 5, 6...12, 3... using IC MSI [10] (B) 74163. The pin terminology and functionality of IC MSI 74163 is given in Fig.

74x163				Inp	uts		Current State				Next State			
2 CLK		-	CLR	LD	ENT	ENP	QD	QC	QB	QA	QD*	QC*	QB®	QA*
1 ACLD		clear	0	×	- x	X	X	X	X	X	0	0	0	0
-O LD		load	1	0	- x	x	X	х	x	x	D	С	В	Α
ENP		hold			0	X	×	X	Х	x	QD	QC	QB	QA
10 ENT	14	hold		1	× .	0	X	X	X	x	QD	QC	O8	QA
3 A	QA 13	HOIG	1	1	1	1	0	0	0	0	0	0	0	1
* B	QB 13			1	1	- 1	0	0	0	1	0	0	-1	0
_ 6 C	QC 11		,	1	1	1	0	0	1	0	0	0	1	1
6 D	QD 15	-		Ŷ	1	1	0	- 0	- 1	1	0	1.	0	0
	RCO	-	-	1	1	1	0	1	0	0	0	. 1	0	1
			0	33	F	ig. 4(3/6						

- With the help of a neat diagram and voltage transfer characteristics explain the working of a non-inverting Schmitt trigger. Derive the expressions for its (A) Q.5 threshold levels.
 - Draw and explain the functional block diagram of IC 555 and explain its [10] (B) operation in monostable mode. Draw its various waveforms.
- [20] Write short notes on: (Attempt any two) 0.6
 - Voltage to frequency converter. (A)
 - IC 74181 Arithmetic Logic Unit. (B)
 - Waveform generator XR 2206. (C)

(3 Hours)

Q.P.Code: 37720 [Total Marks 80]

2	Question No. 1 is compulsory. Solve any three questions from the remaining. Assume suitable data wherever necessary and justify the assumption.	
1 a	1. Draw suitable diagrams wherever required. Compare Binomial filter with Chebyshev filter. What is reactive near field. Explain its importance in communication and	5
	its applications. Compare Broadside and Endfire array. Find the gain of an antenna when physical aperture is 5 m ² at 2 GHz with efficiency 70%.	5 5
2 a	Design a composite high pass filter by the Image parameter method with the following specification.	10
2 b	R_0 =75 Ω , f_c =50 Mhz, f_∞ =48Mhz Design a LPF whose input and output ports are matched to 50 Ω impedance with cutoff frequency of 3 GHz, equi ripple of 0.5 dB and rejection of atleast 40 dB at approx twice the cutoff frequency.	10
3 a	Derive Friss transmission formula. State its significance in wireless communication. gain and receiving antenna with 17dB gain and antenna is fed with 200 W power. What is maximum power received at a distance of 0.75 Km over free space for 1 GHz frequency. The system consists of transmitting antenna with 3 dB Derive radiation resistance of small dipole. Explain its significance.	10
3 b 4 a	Find the radiation pattern for an array of 4 elements fed with same	10
4 b	Design a rectangular microstrip antenna with coaxial feed at 2.15	10
5 a 5 b	Describe parabolic reflector antenna and its different feeding methods. Explain important features of loop antenna. Discuss use of loop antenna in radio direction finding.	10
6	Write short notes on: a. RF field effect transistor b. Binomial array c. RF behavior of resistor and capacitor.	20

d. Helical antenna