UNIVERSITY OF MUMBAI SCHEME OF INSTRUCTION AND EVALUATION (R2007) Programme: B.E. (ELECTRONICS ENGINEERING)

SEMESTER: VII No. of periods of 1Hour Duration of Marks								
Sr. No	Subjects	No. of perio	ods of 1Hour Practical	Duration of Theory Paper in Hours	Theory Paper	Term Work	Iarks Oral	Total
1	VLSI Design	4	2	3	100	25	25	150
2	Filter Design	4	2	3	100	25	25	150
3	Power Electronics and Drives	4	2	3	100	25	25	150
4	Communication Networks	4	2	3	100	25	25	150
5	Elective-II 1. Wireless communication 2. Advances in Biomedical Instrumentation 3. Micro computer system design 4. Digital Image Processing Design	4	2	3	100	25	25	150
6	Project -I		4			25	25	50
	TOTAL	20	14	15	500	150	150	800

SEMESTER: VIII

Sr. No		No. of periods of 1Hour		Duration		Ν	larks	
	Subjects	Lecture	Practical	of Theory Paper in Hours	Theory Paper	Term Work	Oral	Total
1	Advance VLSI Design	4	2	3	100	25	25	150
2	Robotics and Automation	4	2	3	100	25	25	150
3	Embedded Systems and Real- Time Programming	4	2	3	100	25	25	150
4	Elective-III 1. Advanced Networking Technologies 2. DSP Processors and architectures 3. Neural Networks & Fuzzy Systems 4. Electronics Product Design	4	2	3	100	25	25	150
5	Project -II		8			50	100	150
TOTAL		16	16	12	400	150	200	750

University of Mumbai

CLASS:	B.E.	(Electronics	Engineering)
--------	------	--------------	--------------

SUBJECT: VLSI Desig	jn		
Periods per week	Lecture	04	
· · ·	Practical	02	
(each of 60 min.)	Tutorial	-	
		Hours	Marks
Evaluation System	Theory Examination	3	100
Γ	Practical examination		
	Oral Examination	-	25
	Term Work	-	25
	Total		150

Module	Contents	Hours
Objective	To familiarize students with the different aspects of the VLSI field and to introduce important concepts that have industry value	-
Pre-requisite	Digital System Design I and II, BEC	-
1. Introduction to VLSI	Evolution of logical complexity in ICs as a function of time, VLSI design flow, Y-chart representation, design hierarchy/design abstraction levels in digital circuits, concepts of regularity, modularity and locality, Semi-custom & full custom devices	03
2. Physics of MOSFET	MOS capacitor, energy band diagrams, band bending, flat band voltage, threshold voltage calculation, threshold adjustment, MOSFET linear and saturated operation(GCA), MOSFET capacitance, channel length modulation. Types of scaling, functional limitations of scaling, short channel, narrow channel effects, hot electron effects.	13
3. Semiconductor manufacturing process	Wafer processing, mask generation, oxidation, epitaxy, ion implantation, diffusion, metallization, photolithography, process steps for NMOS & PMOS devices, CMOS inverters, latch-up in CMOS and its prevention. Process simulation using CAD tools Video of manufacturing process to be shown.	03
4.Design rules and layout	Need of design rules, NMOS, PMOS and CMOS design rules and layouts. Design of NMOS and CMOS Inverter, NAND and NOR gates. Interlayer contacts, Butting and Buried contacts. Stick diagrams, layout of integrated circuits. Realization of Boolean expressions in CMOS. Use of CAD tools for layout design and simulation.	10

5.MOS Inverters	MOS inverters - resistive load - NMOS load - pseudo NMOS (Qualitative) and CMOS inverters (quantitative) -calculation of noise margin, calculation of rise, fall and delay times for CMOS inverter, transistor sizing and power dissipation , series and parallel equivalency rules, equivalent inverter (numericals on noise margin calculations, timing calculations, power dissipation, equivalency expected)	12		
6. Verilog	Basic concepts, structural gate level, switch level, behavior and RTL modeling. Arithmetic Circuits in CMOS VLSI – carry look ahead adder, high speed adders, subtractors, decoders, multiplexer and multipliers. Sequential circuits' implementation using verilog (Flip-Flop, registers and counters, state machines).			

- 1. Sung-Mo Kang & Yusuf Leblebici, CMOS Digital Integrated Circuits -Analysis & Design, Second Ed., MGH
- 2. Jan M Rabaey, Digital Integrated Circuits A Design Perspective, Prentice Hall
- 3. Fabricius, Eugene D, Introduction to VISI Design. TMH
- 4. Samir Palnitkar, Verilog HDL, A Guide to Digital Design and Synthesis, Pearson Education.

Reference Books:

1. Neil H.E. Weste, Kamran Eshraghian, *Principles of CMOS VLSI Design: A* system perspective, Addison Wesley publication.

2. Fundamentals of Modern VLSI Devices by Yuan Taur, Cambridge University Press

Proposed Practical list

Suggested list of experiments using CAD tools such as Magic, Microwind, Tanner tools, Xilinx ISE etc.

- 1. Spice simulation of NMOS(resistive load, enhancement load, depletion load) inverters, CMOS inverters
- 2. Fabrication process simulation using CAD tool
- 3. Layout design and simulation , using CAD tools, of the following
 - 1. CMOS Inverter
 - 2. NAND/NOR gates
 - 3. Boolean expressions
 - 4. Mux/Decoder
 - 5. Logic expression using pass transistor/ transmission gate
 - 6. 6T RAM cell
- 4. Simulation and synthesis of Verilog code for
 - 1. Adder/subtractor
 - 2. Mux/decoder
 - 3. flip-flop/counters
 - 4. State machines

Term work:

The term work should contain at least 7 CAD programs and 2 assignments covering the whole syllabus, duly recorded and graded.

The distribution of marks for term work shall be as follows,

Laboratory work (Experiments and Journal) : 15 marks.

Test (at least one)

: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be from the same module or mixed in nature.
- (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 6. No question should be asked from pre-requisite module

University of Mumbai						
CLASS: B.E. (Electro	Semester - VII					
	SUBJECT: Filter Desig	gn				
Periods per week	Lecture	4 2				
_	Practical					
(each of 60 min.)	Tutorial	-				
		Hours	Marks			
Evaluation System	Theory Examination	3	100			
	Practical examination					
	Oral Examination	-	25			
	Term Work	-	25			
	Total		150			

Objective	Filter is an important part of any electronic system. to introduce the student the design of analog and d ,adaptive filters and multirate signal processing	
Pre-	Continuous and Discrete time signals and systems	
requisite Module	Contents	Hours
1	Analog filters Filter specifications, Introduction to Butterworth Chebyshev, design (Derivation of T.F.), Elliptical filters, Frequency Transformations Low pass, high pass and band pass active filter realization, infinite gain single amplifier (LP,BP & HP) , positive and negative feedback infinite gain single	Hours 10
2	amplifier filters, high order filters. Direct realization methods: Active network elements for direct realization, inductance simulation frequency dependent negative resistors, leapfrog realization techniques, primary resonator block, switched capacitor filters.	10
3	IIR filter design IIR filter design methodology, Design of Butterworth and Chebyshev filters using Impulse/step invariant method, matched Z Transform method, Bilinear transform Technique. Spectral transformations Filter design by pole zero placements.	6
4	FIR filter : Analysis and design Linear phase FIR filter and its types, FIR filter design using windows and Frequency sampling method, Half Band FIR filter design.	6
5	Adaptive Filters: Concept of adaptive filter ,MMSE criterion ,LMS and RLS algorithms ,Basic Weiner filter and its applications	8
6	Multirate Digital signal Processing Concepts Decimation Interpolation ,sampling rate conversion by raional factor, polyphase structures ,multistage implementation ,applications like subband coding and Quadrature mirror filtering.	8

- Principles of Active network synthesis and design: Govind Daryayani John Wiley publication
- Active and passive analoig filter design- Lawrence P Huelson Tata- Mc-Grawhill publication
- E.C.Ifeachor and B.W Jervis, Digital Signal Processing A Practical approach, Pearson Publication, second edition
- Ashok Ambardar, Digital Signal Processing, Cengeg Learning Publication,.

- J.G. Proakis, D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and applications, Prentice Hall of India, 1995
- A.V. Oppenheim, Ronald W Schafer, Prentice Hall, 1983.
- A.Antoniou, Digital Filter analysis and applications. Tata McGraw-Hill Publication.
- Siman Hykin, Adaptive filters, PHI Publications
- S,Salivahanan, A. Vllaraja, C.Ganapriya Digital signal processing ,Mc Graw Hill ,second edition
- P.P.Vaidyanathan Multirate systems and Filter Banks Prentice Hall of india 2006
- Digital signal processing :system analysis and design .Diniz ,da sillva, Netto Cambridge university press

Reference Books:

- B.P.Lathi, linear systems and signals Oxford University Press second Indian Impression, 20007.
- S.K. Mitra, Digital Signal Processing, Tata McGraw-Hill Publication, 2001
- Chi-tsong Chen Digital signal processing, Oxford University Press
- P.P.Vaidyanathan Multirate systems and Filter Banks Prentice Hall of india 2006
- Digital signal processing:fundamentals and applications Li Tan Acadamic press

Suggested list of simulations Matlab or C/C++ or Labview:

- 1. Analysis of analog filters in frequency domain
- 2. IIR filter design : Impulse invariant and Bilinear transform method
- 3. Linear phase filters: comparison of various types
- 4. FIR design using windows
- 5. FIR design using frequency sampling
- 6. Effect of quantization on filter design
- 7. Introduction to FTA tool for filter design
- 8. Application of adaptive signal processing to practical one dimensional signal e.g. speech signal ,ECG signal, music signal etc
- 9. Implementation of interpolation and decimation operation
- 10. implementation of filter on DSP processor

Term Work:

The term work shall consist of at least **two numerical assignments and six MATLAB Or C/C++ or Labview simulations** covering the whole of syllabus, duly recorded and graded.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal) : 15 marks.

Test (at least one)

: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus

- 1. Question paper will be comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be mixed in nature. (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 6. No question should be asked from pre-requisite module.

	University of Mumbai			
CLASS: B.E. (Electro	onics Engineering)	Semester	- VII	
SUBJECT: Power Ele	ectronics and Drives			
Periods per week	Lecture	4		
-	Practical	2		
(each of 60 min.)	Tutorial	-		
		Hours	Marks	
Evaluation System	Theory Examination	3	100	
	Practical /Oral			
	examination			
	Oral Examination	-	25	
	Term Work	-	25	
	Total		150	

Objective	To teach the applications of power electronics devices. Also to study Industrial Drives.	
Pre- requisite	Power Semiconductor devices, AC and DC machines	
Module	Contents	Hours
1	Phase Controlled Converter: Single phase bridge converter with effect of source impedance. Dual converter.	04
2	 Chopper: Principle of chopper operation, step –up and step – down, one quadrant, two quadrant chopper (Type A and B). Thyristorised chopper circuits a) Voltage commutated chopper b) Current commutated chopper c) Load commutated chopper 	10
3	 Inverter: Classification of inverter , Analysis & Design: a) Series , Parallel and bridge (Mc Murray) b) Voltage and current source inverter c) PWM inverter Different methods for harmonic reduction in inverter output. 	12
4	 DC Drives: Concept of DC electric drive with respect to speed control. Single phase, half wave semi converter, full converter drive for separately excited dc motor. Dynamic and regenerative braking of DC motor. Methods used to adjust following parameters of a typical dc drive. 1) Speed 2) IR compensation 3) current limit 4) acceleration/de-acceleration 	08
5	AC Drives: Induction motor fundamentals and speed control methods 1. Stator voltage 2. Variable frequency 3. Rotor resistance 4. Slip energy recovery scheme Drives related to V/F control and slip power recovery scheme.	08
6	Applications: SMPS and UPS:- Analysis of fly back, forward and half bridge converters	06

for SMPS. Block diagram and configuration of UPS, salient features, selection of battery and charger ratings and sizing of UPS

Text Books:

- 1) General Electric: SCR manual, USA.
- 2) M.H. Rashid, Power electronics, PHI India.
- 3) M.D. Singh and K.B. Khanchandani, power electronics, Tata McGraw Hill
- 4) Dr. P.S. Bimbhra, Power Electronics, Khanna Publications.
- 5) shepherd, Hulley, Liang power electronics and motor control second edition, Cambridge

Additional Reading:

Chute and Chute: Electronics in Industry; MGH
 B.W. Williams: Power Electronics, Jhon Willey, 1975.
 P.C. Sen, Power Electronics, TMH.

Suggested Laboratory Experiments

Minimum Six experiments on

- Various types of Inverters
- Various types of Choppers
- Speed Control of DC Motor and Induction Motor

Term work:

Term work shall consist of minimum six experiments, Two Assignments and a written test.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal)	: 15 marks.
---	-------------

Test (at least one)

: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Theory Examination:

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be from the same module or mixed in nature.
- (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 6. No question should be asked from pre-requisite module

BE, VII-VIII, Electronics, wef 2010-11

University of Mumbai CLASS: B.E. (Electronics Engineering) Semester – VII						
SUBJECT: Commun	ication Networks					
Periods per week	Lecture	4 2 -				
(Each of 60 min.)	Practical					
	Tutorial					
		Hours	Marks			
Evaluation System	Theory Examination	3	100			
	Practical examination	-	-			
	Oral Examination	-	25			
	Term Work	-	25			
	Total		150			

Objectives: Interconnecting hardware, configuring network systems, measuring performance, observing protocols in action, and creating client-server programs that communicate over a network all help sharpen students's understanding and appreciation.		
Module	Contents	Hours
1	Introduction to Communication Networks Communications Model, Data Communication Networks- Public Switched Telephone Network (PSTN), Leased Line, Local Area Networks (LAN), Public Switched Data Network (PSDN), and Integrated Services Digital Network (ISDN). Communication Architectures, Protocol Layer Concepts, OSI Layer, Standard Organizations. Transmission Media: Twisted pair, STP, UTP, Coaxial cable, Fiber Optics, Wireless, Microwave, Satellite, Radio, and Media Properties.	06
2	Data Transmission and Digital Carrier Systems Simplex, Half-Duplex, Full-Duplex, Serial and Parallel Transmission, Synchronous and	08

	AsynchronousTransmission,BitOrientedSynchronousTransmission,ByteOrientedSynchronous.Modem functions,Standard VSeries.DigitalCarrierSystems:T-carrier,Super frame,Extended Superframe,(ESF),XDSL.E-carrier,PDH,DigitalHierarchy,SynchronousOptical Network,conceptofSONET/SDH,andDigitalMultiplexingHierarchy,Sonethy,Sonethy,	
3	DataLinkControlFlow Control, Framing, Sliding-Window, ErrorDetection, Parity Check, Cyclic RedundantCheck (CRC), Error Control Techniques, Stop-and-Wait ARQ, Go-back-N ARQ, Selective-repeat ARQ. HDLC Frame Format .	08
4	Switching Network Switching technology, Circuit switching, Packet switching, Virtual Circuits and Datagram. Routing in Packet Networks, Network Algorithms and Shortest Path Routing, Congestion Control in Switched Data Networks.	08
5	Local Area Networks and High-Speed LANs LAN characteristics, Topology, Bus, Ring, Star, LAN Media, Data Link Layers, MAC Address, Logical Link Control, LAN Standard, IEEE 802.2, IEEE 802.3- CSMA/CD, CSMA/CA Ethernet architecture, IEEE 802.3 specifications, Hub, 10Base5, 10Base5, 10BaseT, 10BaseF, Concept of bridge LAN., Ethernet Frame, Binary Back off, Inter-frame Gap, Ethernet Performance, Ethernet Switching. IEEE 802.4, IEEE 802.5, Gigabit Ethernet and FDDI.	10
6	Applications and Layered Architectures Examples of Protocols, Services (HTTP, DNS and SMTP etc), and Layering, TCP/IP Architecture. TCP/IP Protocol, IP Addressing, The Berkeley API, Application Layer Protocols and TCP/IP Utilities	08

1. William Stallings, Data Computer Communications, Pearson Education

- 2. A. Leon-Garcia and Indra Widjaja, Communication Networks, Tata McGraw-Hill Publication
- 3. Behrouz A Forouzan, Data communications and Networking 4th Edition, McGraw-Hill Publication.
- 4. J. F. Kurose and K. W. Ross, Computer Networking, Pearson Education
 5. D. Bertsekas and Gallager, Data Networks, 2nd Edition, Prentice-Hall of India

Reference Books:

1. Gerd Keiser, Local Area Networks, McGraw-Hill Publication.

- 2. Dayanand Ambawade and Deven Shah, Linux Lab, Wiley-Dreamtech Publication.
- 3. Behrouz A Forouzan, Local Area Network 4th Edition, McGraw-Hill Publication

4. Youlu Zheng, Networks for computer scientists and engineers OXFORD Publication

5. Natalia olifer Victor olifer, Computer Networks Wiley- Publication

Proposed Practical list:

- 1. Study of Hardware and Software Components of Computer Communication and Networking
- 2. Network Installation & Configuration of Network OS : GNU/Linux
- 3. IP Networking & Network Commands: *ifconfig*, *ping*, *traceroute*, *netstat*, *arp*,*nslookup dig* & *route* etc.
- 4. Study of Modem Commands, Queries
- 5. Study of Serial Communication (RS-232)
- 6. Study of Network topology and flow control techniques.
- 7. Simulation of Shortest path routing algorithms.
- 8. Installation and Configuration of Telnet & FTP Server/Client
- 9. Installation and Configuration of DNS & Web Server/Client
- 10. Network Protocol Analyzers : TCPDUMP & ETHEREAL
- 11. Implementation of CSMA/CD and Stop-n-Wait Protocols using Network Simulator (ns-2)
- 12. Study of Wireless LAN (WLAN): Adhoc & Infrastructure Network Mode
- 13. Implementation of Socket Programming

Term work:

Term work shall consist of minimum six experiments, 2 Assignments and a written test.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal)	: 15 marks.
---	-------------

Test (at least one)

: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be from the same module or mixed in nature.
- (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any

module other than module 3.)

- In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus. No question should be asked from pre-requisite module 5.
- 6.

University of Mumbai				
CLASS: B.E. (Electro	Semester	– VII (Elective)		
SUBJECT: WIRELES	S COMMUNICATION (Electiv	ve)		
Periods per week	Lecture	4		
	Practical	2		
(each of 60 min.)	Tutorial	-		
	Hours	Marks		
Evaluation System	Theory Examination	3	100	
	Practical examination			
	Oral Examination	-	25	
	Term Work	-	25	
	Total		150	

Module	Contents	Hours
Objective	The objective of the course is to introduce the	-
	Concepts of basic wireless mobile communication systems.	
Pre-requisite	Fundamentals of Digital Communication	-
1	Introduction and Cellular Concept Existing technology, Evolution in wireless systems, Trends in cellular system Frequency Reuse channel Assignment Strategies, Handoff Strategies, Interference and System Capacity, Cellular System, Design in worst case with an omni Directional Antenna, Co-Channel Interference Reduction with use of Directional Antenna, Improving Coverage and Capacity in Cellular systems, Trunking and Grade of service	08
2	WIRELESS COMMUNIACTION SYSTEMS GSM GS Services and features , GSM Architecture and interfaces, GSM Radio Sub System , GSM Channel Types , Traffic Channels, Control Channels, Example of a GSM call, Frame structure for GSM , Signal Processing in GSM, GPRS.	10
3	Wideband Modulation Techniques –OFDM Basic Principles ,OFDM Signal Mathematical	12

	representation , Block Diagram , Selection Parameters for modulation , Pulse shaping, Windowing, Spectral Efficiency , Synchronization	
4	WIRELESS COMMUNIACTION SYSTEMS CDMA IS95 Direct sequence Spread Spectrum , Spreading codes, Multipath Signal Propagation and RAKE receiver, Frame Quality and BER Requirements, Critical challenges of CDMA,TIA IS95 System, Physical and Logical Channels of IS95, CDMA IS95 call processing, soft hand off and power control in CDMA,Access and Paging Channel Capacity, Reverse and Forward Link Capacity of a CDMA System.	08
5	WIRELESS COMMUNIACTION SYSTEMS CDMA 2000 : CDMA layering structure, CDMA 2000 channels, logical channels , forward link physical ,forward link features ,reverse physical channels , CDMA 2000 Media Access control and LAC sub layer, Data services , Data services in CDMA 2000 , mapping of logical channels to physicals, evolution of CDMA IS95 to CDMA 2000.	10
6	More WIRELESS COMMUNIACTION SYSTEMS Bluetooth, Wi Fi Standards, WIMAX, Wireless Sensor Networks, Zigbee, UWB, IEEE 802.20 and Beyond.	04

- 1) Wireless Communication : Principles and Practice Theodare . S. Rappaport- Pearson Education
- 2) Wireless Communication :- Upena Dalal Oxford Higher Education
- 3) Wireless Network Evolution : 2G to 3G Vijay . K. Garg Pearson Education

Additional Reading:

- 1) Principles and Application of GSM Vijay Garg , Joseph . E. Wilkes Pearson Education
- 2) Mobile Cellular Telecommunications : Analog and Digital Systems , William C. Y. Lee, Tata McGraw – Hill Edition
- 3) Introduction to Wireless Telecommunication Systems and Networks- Gary . J. Mullet, DELMAR CENGAGE Learning
- 4) Wireless Communications and Networks : 3G and Beyond, ITI Saha Misra, Tata McGraw – Hill Edition
- 5) Fundamentals of Wireless Communication: David Tse, Pramod Viswanath, CAMBRIDGE University Press
- 6) Mobile Wireless communications, Mischa Schwartz, CAMBRIDGE University Press

BE, VII-VIII, Electronics, wef 2010-11

7) Wireless Communications : Andreas F. Molisch , Wiley Student Edition

Proposed Practical list

Hardware setups or simulation experiments on the following

- 1. OFDM (2 expts),
- 2. GSM (2 expts),
- 3. CDMA (2 expts),
- 4. One seminar per student on related latest technology in wireless systems (outside syllabus)

Term work:

Term work shall consist of minimum six experiments, Two Assignments and a written test.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal)	: 15 marks.
Test (at least one)	: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be from the same module or mixed in nature.
- (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 6. No question should be asked from pre-requisite module

University of Mumbai		
CLASS: B.E. (Electronics Engineering) Semester – VII (Elective)		
SUBJECT: Advances in Biomedical Instrumentation (Elective)		

Periods per week		Lecture			
		Practical	2		
(each of 60 min.)		Tutorial			
			Hours		Marks
Evaluation	System	Theory Examination	3	,	100
		Practical examination	-		
		Oral Examination	-		25
		Term Work	-		25
	_	Total			150
Module	Contents				Hours
Objective		inderstand importance of p	•		
		ostic equipments in Medical			
		ial and working of prosthetic a			
		Different imaging techniques in		Drug	
Dre		ery and Hospital Information S		oftor	
Pre- requisite		ge of generation of electri anatomy and physiology of I			
requisite		systems. Basic working			
		al instruments.	and desig		
1		inciple of Photometry :			06
	-	er Lambertz's Law,			00
		otoelectric Colorimeter			
• FI		pectrophotometer lame photometer			
		itoanalyzer			
2	Blood Gas Analyzers:		08		
2		02, PCO2 and PH measureme	nt [.]		00
		Blood Gas Analyzer;	, iii,		
		ll Counter :			
		ethods of Cell counting-Coulter Counters;			
		utomatic recognition and			
		ifferential counting of cells.			
3		Ionitoring Instruments:		06	
	• Ca	ardiotocograph			
	• Fo	etal heart rate measurements			
• Fc		etal scalp pH monitoring			
4	Orthotic and Prosthetic Engg.		10		
		, Need and Classification			
	Normal H	Iuman Locomotion – Gait Cycle	Э		
Biological Testing and Biocom Upper and Lower limb Prosthe Upper and Lower limb Orthotic		ials : Definition, Need and Clas	sification		
		•			
			S		
	Study of various biomaterials and applications				
		etallic Implants			
		omposites			
		eramics			
		blymers			
	Heart Lui	ng Bypass machine and artificia	ai heart valv	es	

5	Fundamentals of medical imaging: X-ray computed Tomography, Spiral or Helical C T: Slip Ring Technology, C T Angiography. Clinical use & Biological effects and safety, Magnetic resonance imaging Biological effects and safety. Nuclear medical imaging Biological effects and safety., Infrared imaging, Liquid crystal thermography. Microwave thermography. Endoscopy, gastroscope, bronchoscope, cystoscope, colonoscope, Enteroscope Lithotripsy.	10
6	Advances in Biomedical Systems:Introduction to Nanotechnology and its use in DrugDelivery System,Hospital Information system: Role of database in HIS.Need of Networking in HIS. Overview of Networking,topologies and its configuration. Structuring medicalrecord to carry out functions like admissions,discharges, treatment history etc.Computerization in pharmacy & billing. Automated clinicallaboratory systems & radiology information system.	08
Text	Books:	
1.	Khandpur R. S., Handbook of Biomedical Instrumentation, Ta McGraw Hill, second edition, 2003	ita
	Carr and Brown, Introduction to biomedical equipment to fourth edition, Pearson press, 2003	

- 3. Sujata V. Bhat, Biomaterials, Narosa Publishing House, 2002.
- 4. W.R.Hendee & E.R.Ritenour, Medical Imaging Physics (3rd eds), Mosbey Year-Book, Inc., 1992.

Reference Books:

- 1. John G. Webster, Bioinstrumentation John Wiley and sons,2004
- 2. Joseph Bronzino (Editor-in-Chief), Handbook of Biomedical Engineering, CRC Press, 1995.
- 3. Neelina Malsch, Biomedical nanotechnology by CRC press release, Malsch TechnoValuation, Utrecht, The Netherlands
- 4. L.A.Geddes and L.E.Baker,"Principles of Applied Bio-Medical Instrumentation" John Wiley & Sons 1975.
- 5. Khandpur R S, Handbook of Analytical Instrumentation, Tata Mc Graw Hill
- Harold E. Smalley, "Hospital Management Engineering A guide to the improvement of hospital management system", PHI. C. A. Caceras ,"Clinical Engineering"

Proposed Practical list

Sr.no	Торіс	Title of Experiment
1	Basic principle of	Experiment based on any analyzer
	Photometry	
	/Analyzer	
2	Monitors	PH Meter
3		FHR (Foetus Heart Rate Monitor)
4	Orthotic and	Prosthetic Limb

5	Prosthetic Engg.	Heart Lung Machine or any other Prosthetic unit
6 7	Medical Imaging	Experiment to demonstrate imaging based on different Principles
8	HIS	Demonstration of S/W used for hospital Information System
-		-)

Termwork:

The term-work shall consist of at least six laboratory experiments covering the whole of syllabus, duly recorded and graded.

The distribution of marks for term work shall be as follows,	
Laboratory work (Experiments and Journal)	: 15 marks.
Test (at least one)	: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Theory Examination:

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be mixed in nature. (e.g.- suppose Q.2 has part(a) from,
 - module 3 then part (b) will be from any module other than module 3.)
- 5. In the question paper, weightage of each module will be proportional to number of

respective lecture hours as mentioned in the syllabus.

6. No question should be asked from pre-requisite module.

University of Mumbai						
CLASS: B.E. (Electronics Engineering) Semester – VII (Elective)						
SUBJECT: Elective	- Microcomputer System Des	sign				
Periods per week	Lecture	4				
_	Practical	2				
(each of 60 min.)	(each of 60 min.) Tutorial -					
	Hours	Marks				
Evaluation System	Theory Examination	3 100				

Practical /Oral examination		
Oral Examination	-	25
Term Work	-	25
Total		150

Module	Objectives: To understand the architecture and fur of Pentium processor, its peripherals and interfacing	-
	Pre-requisite: Fundamentals of Microprocessor	
	Contents	Hours
1	The Pentium Processor Detail discussion of Pentium architecture and functional units: super scalar architecture, dual pipe line, Integer pipeline stages, Floating point instruction stages, Overview of on chip code Maintaining coherency in on-chip cache MESI protocol Write once policy Study of Pentium signal interface, interface with various devices, misaligned data transfers data bus steering for 32, 16 and 8 bit devices	08
2	The Pentium Processor Code cache organization, split line access Branch Prediction logic, Instruction pairing rules Data Cache organization, detail discussion with various situations of U and V pipeline accesses Burst bus cycles, cache line fills, single transfer cycles pipelined cycles, special cycles. Interrupt acknowledge bus cycle, bus cycle state machine, bus and bus state transition. System management mode Interrupts, reliability and error reporting	10
3	Advanced features of Pentium II, Pentium Pro, Pentium IV Out of order execution, Advanced Branch Prediction, Hyper threading, On chip Level 2 cache, Trace cache.	06
4	PCI bus : Introduction to local bus , Need for standard bus PCI signal interface: Functional grouping of signals, their role in transactions PCI Bus arbitration , Hidden Bus Arbitration , Bus Access Latency Situations when master or target dominates the bus PCI read write commands Interrupt handling in PCI, Interrupt Routing and Chaining Need for the configuration space and its usage	10
5	Peripheral Bus Interfaces Basic hard disk structure IDE interface signals ,Timing Specifications, IDE	08

register model, IDE protocols, commands SCSI Bus hardware, Phases in transactions, Commands and protocols	
Universal Synchronous Bus(USB) :	06
Introduction to USB, PC requirements, Bus topology, understanding the host and the	
peripheral, the development process. USB transfer basics, Elements of a transfer, successful transfers. Transfer types, Control transfer, Bulk transfer, Interrupt transfer,	
	SCSI Bus hardware , Phases in transactions, Commands and protocols Universal Synchronous Bus(USB) : Introduction to USB, PC requirements, Bus topology, understanding the host and the peripheral, the development process. USB transfer basics, Elements of a transfer, successful transfers. Transfer types, Control transfer,

- 1) Tom Shanley et al, Pentium Processor System Architecture, **Addison Wesley Press**
- 2) Tom Shanley et al, PCI System Architecture, Addison Wesley Pres
- 3) F. Schmidt, SCSI Bus and IDE Interface, Addison Wesley Press
- 4) Jan Axelson, USB Complete, Pentium Publication, Second Edition

Reference Books:

1) Tom Shanley et al, Protected Mode Architecture, Addison Wesley Press

Suggested Laboratory Experiments

Minimum six experiments on

- Use of CPUID instruction and identification of Processor
- Various uses of DOS interrupts
- PCI BIOS

And assignments /experiments covering other topics of syllabus

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Term work:

Term work shall consist of minimum Six experiments, assignments and a written test.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal) : 15 marks. : 10 marks.

Test (at least one)

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be from the same module or mixed in nature.
- (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 6. No question should be asked from pre-requisite module

University of Mumbai							
CLASS: B.	E. (Electro	onics Engineering)	Semester -	- VII(Elective)			
Periods pe	r week	Lecture	04				
		Practical	02				
(each of 60	min.)	Tutorial	-	Marks			
	Hours						
Evaluation	System	Theory Examination	03	100			
		Practical examination					
		Oral Examination	-	25			
		Term Work	-	25			
		Total		150			
Pre- requisite		sing shall teach basic concepts us and Discrete time signals a		ct.			
Module	Contents	6		Hours			
1	Digital Ir Introduct systems, sampling	4					
2	g, 's.						
3	 Homomorphic Filtering Colour Image Enhancement. Image Segmentation Detection of Discontinuities, Edge linking & Boundary Detection, Thresholding, Region based segmentation Laplacian of Gaussian, Derivative of Gaussian, Canny Edge Detection, Morphological operation : Dilation erosion, Opening & Closing, Basic 						

	Morphological Algorithm, Image representation schemes.	
4	Image Transform Discrete Fourier transform, Walsh transform(WT), Hadamard transform, Cosine transform, Haar transform, Wavelet transform,	8
5	Image Compression Fundamentals ,Lossless compression : RLE, Arithmetic Coding, Huffman Coding, ,Lossy compression : JPEG,MPEG, Subband Coding, Vector quantization, Image & Video compression standard.	10
6	Applications of Image Processing Case Study on Digital Watermarking, Biometric Authentication (Face, Finger Print, Signature Recognition), Vehicle Number Plate Detection and Recognition, Object Detection using Correlation Principle, Person Tracking using DWT, Handwritten and Printed Character Recognition, Contend Based Image Retrieval, Text Compression.	6

- 1. Gonzalez & Woods, Digital Image Processing, Pearson Education, Second edition.
- 2. W. Pratt, Digital Image Processing, Wiley Publication, third edition, 2002.
- 3. S.Jayaraman Digital Image Processing TMH (Mc Graw Hill) publication
- 4. Milin Sonaka, Digital Image Processing and computer vision cengage learning, Thomson publication second edition.2007.
- 5. A.K. Jain, Fundamentals of Image processing, Prentice Hall of India Publication, 1995
- 6. Gonzalez & Woods, Digital Image Processing using MATLAB, Pearson Education

Reference Books:

1.Mc Andrew ,Introduction to Digital Image processing with Matlab cengage learning publication

2 Doubhcrty, Digital Image processing for medical application, Cambridge

Suggested List of Experiments :

List of experimental: using C/C++ or matlab or java Topic-1 : Image Enhancement [Any two Experiments]

- 1. To enhance image using Histogram Equalization
- 2. To enhance image using Contrast Stretching
- 3. To enhance image using spatial filtering
- 3. To perform Colour Image Enhancement

Topic-2: Image Segmentation [Any two Experiments]

- 1. To find edges using LOG and DOG
- 2. To find Edges using Prewit/ Sobel/ Fri-chen / Robert operators.
- 3. To find edges using canny Edge Detection.
- 4. To implement Morphological Operators

Topic-3 : Image Compression [Any Two Experiments]

- 1. To compress using Huffman coding
- 2. To compress DCT coefficient of Image
- 3. To compress Wavelet Coefficient of Image.
- 4. To compress Binary Image using Run Length Coding

Topic-4 : Application Development [Any Two Experiment]

- 1. Digital Watermarking
- 2. Biometric Authentication such as Face / Finger Print / Signature Recognition)
- 3. Vehicle Number Plate Detection and Recognition,
- 4. Object Detection using Correlation Principle,
- 5. Person Tracking using DWT,
- 6. Handwritten and Printed Character Recognition,
- 7. Contend Based Image Retrieval,
- 8. Morphological Toolkit Development
- 9. Human Expression Detection
- 10. Image Enhancement using Adaptive Histogram Equalization(AHE), Modified AHE(MAHE), Technique.
- 11. Image Compression using Vector Quantization
- 12. Image Compression using JPEG

Term Work:

The term work shall consist of at least six MATLAB Or C/C++ covering the whole of syllabus, duly recorded and graded.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal) : 15 marks.

Test (at least one)

: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Theory Examination:

1. Question paper will comprise of total 7 questions, each of 20 marks.

- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be from the same module or mixed in nature.
- (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 6. No question should be asked from pre-requisite module

B. E. Electror	nics Engineering
	lester VII
	– Project -I
Project Hour: 4 Hrs/week	Term work: 25 marks
	Oral Exam. : 25 marks
	Total marks=50 marks
Note: One faculty will not guide more that	
	idered as 1 Hour per group per week, be ch group will not have more than 4 students.
specified in time table of the faculty. Lat	in group will not have more than 4 students.
Rationale: Project allows the studen	t to work independently to put the
knowledge of Electronics engineerir	· · · ·
	description
Purpose:	
Engineering Project is a technica	
	of independent work in the span of two
	nallenges the student to explore wide range
of topics and opportunities for inn	
	e student to apply learning from various
v	out and make the best use of the available
resources in terms of faculty, staf	
	students to further develop the managerial ative skills by developing novel engineering
	skills presenting their end application, all
necessary to be a successful end	
,	ssional literature and Gaining experience in
writing a technical document.	3-1
Enhancing employability through	the evidence of independent work.
	ring are expected to build a project by
designing an engineering solution to the	any of the following:
Improving ovisting technology	
 Improvise existing technology Real life concerr 	ns to improve basic
	pulation/security/utility services - water, gas,
	ion etc /infrastructure, housing etc
	facilitate analysis and verifying the same
	applications for space/ military/medical
commercial/telephone/industrial/	

To complete the project, students should describe a mathematical model, simulate, design, development, implementation or small research project in an area of specialization.

Note: Topics are given for student reference and students can explore beyond the topics specified under the guidance of project guide

Guidelines:

- Students should work under the guidance of any faculty member from the department.
- A faculty member must officially supervise all projects. Industry/ research Institute's supervisor (Qualified) may, under the direction of a faculty member, also supervise students. A faculty member is always responsible for the grading of every project.
- Group members should not be more than four
- Project is expected to be completed by end of VIII semester
- At the end of VII semester, students should submit synopsis summarizing the work done in VII semester. The objective of this activity is to achieve the following
 - Introduction/need/scope of the project
 - Clarity on the status of project and plan of action for VIII semester
 - Accumulation of the literature survey done (No un-authentic URL): The literature survey should be through standard Text book, References, Other publications of journals like-IEEE, Wiley Interscience, Springer, Elsevier or similar, of repute.
 - Procurement of Software/ Hardware needed for Installation/ Testing of projects in VIII semester
 - Corrective steps to be taken if any
- Students are expected to adopt systematic approach towards project completion
 - Each project should follow the scientific method and should apply the problem-solving approaches studied in earlier courses. In general, this includes: Gathering Information: A review of the state of the art should be made using the published literature as well as textbooks and student reports from previous projects if available.
 - Proper Planning: Students must define the project goals and must organize a logical sequence of steps to achieve these goals. This will vary depending on the project, ability to procure materials, availability of equipment, etc.
 - Regular Meetings: Students must meet regularly (weekly-4Hrs in VII Semester and 8 Hrs in VIII Semester) with the project guide.
 - Professional Record Keeping: Proper records are essential and are typically kept in a log book with all details of activity noted. Be sure to

use standard nomenclature and work in the SI system of units. (Logbook will contain in table format: Date/ Activity/ outcome/ comment on outcome/ Resources utilized/ Next meeting date, Target/ Guide's Remark)

Term work

Term work should consist of the above mentioned activities which shall be evaluated and shall carry a weightage of 25 marks.

Oral Examination

The oral examination shall be conducted on the basis on presentation given by the students and shall carry a weightage of 25 marks.

UNIVERSITY OF MUMBAI SCHEME OF INSTRUCTION AND EVALUATION (R2007) Programme: B.E. (ELECTRONICS ENGINEERING) SEMESTER: VII

		No. of perio	ods of 1Hour	Duration of	Marks			
Sr. No	Subjects	Lecture	Practical	Theory Paper in Hours	Theory Paper	Term Work	Oral	Total
1	VLSI Design	4	2	3	100	25	25	150
2	Filter Design	4	2	3	100	25	25	150
3	Power Electronics and Drives	4	2	3	100	25	25	150
4	Communication Networks	4	2	3	100	25	25	150
5	Elective-II 5. Wireless communication 6. Advances in Biomedical Instrumentation 7. Micro computer system design 8. Digital Image Processing Design	4	2	3	100	25	25	150
6	Project -I					25	25	50
	TOTAL	20	10	15	500	150	150	800

SEMESTER: VIII

		No. of periods of 1Hour		Duration	Marks			
Sr. No	Subjects	Lecture	Practical	of Theory Paper in Hours	Theory Paper	Term Work	Oral	Total
1	Advance VLSI Design	4	2	3	100	25	25	150
2	Robotics and Automation	4	2	3	100	25	25	150
3	Embedded Systems and Real- Time Programming	4	2	3	100	25	25	150

4	Elective-III 5. Advanced Networking Technologies 6. DSP Processors and architectures 7. Neural Networks & Fuzzy Systems 8. Electronics Product Design	4	2	3	100	25	25	150
5	Project -II					50	100	150
	TOTAL	16	08	12	400	150	200	750

University of Mumbai							
CLASS: B.E. (Electronics Engineering) Semester - VIII							
SUBJECT: Advance	ed VLSI Design	<u> </u>					
Periods per week	Lecture	04					
	Practical	02					
(each of 60 min.)	Tutorial	-					
		Hours	Marks				
Evaluation System	Theory Examination	3	100				
	Practical examination						
	Oral Examination	-	25				
	Term Work	-	25				
	Total		150				

Module	Contents	Hours
Objective	To introduce advance design concepts, develop basic understanding of analog VLSI field and relate to issues occurring at chip level	-
Pre-requisite	VLSI Design, DSD I and II, BEC	-
1. Wire interconnect for circuit simulation	Interconnect parameters (Capacitance, Resistance and Inductance) their effect on circuit performance. Electrical wire models (ideal, lumped, lumped rc, distributed rc and transmission line), switching characteristics, transistor sizing, sizing routing conductors, charge sharing and reliability issues. (Numericals on each subtopic expected)	07
2. Sequential logic circuits design	Clocked systems (Single phase, Two phase and four phase clocking), recommended clocking approaches – clocked CMOS – Dynamic CMOS circuits – solutions for charge sharing - Implementation of general	09

3.Aritmetic Circuits in CMOS VLSI	 VLSI sequential system components such as Flip Flops, static as well as dynamic latches and Registers. Pipelining concepts Dynamic adders, Fast adders, Wide adders: Carry look ahead, Block generate and propagate, carry save, carry skip, carry save 	06
4. Design of memories & programmable logic	CMOS Memory structures – SRAM and DRAM design –Sense amplifier design - Low power design techniques. ROM Arrays and Logic Arrays. EPROM, EEPROM, Flash cell working. Design of basic 6T SRAM Cell with read and write stability criteria	08
5. Timing issues & System Level Physical Design	Timing classification, Synchronous timing basics, clock skew, propagation delay estimation, clock jitter, combined clock skew and clock jitter estimation, synchronous and asynchronous design timing estimations. Clock generation and distribution Crosstalk, Interconnect Scaling, Floor planning & Routing, I/P & O/P Circuit, Power dissipation and consumption, Low power Design considerations.	09
6. Introduction to Analog and Mixed signal design	Building blocks for CMOS amplifiers, CMOS operational transconductance amplifiers. Frequency compensation schemes. Design of fully differential amplifiers, common mode feedback circuits, switched capacitor circuits. Design of sample and hold and comparator circuits.	09

Text books

1. John P. Uyemura, Introduction to VLSI Circuits and systems, John Wiley & sons.

- 2. Sung-Mo Kang & Yusuf Leblebici, CMOS Digital Integrated Circuits Analysis
- & Design, Second Ed., MGH
- 3. Jan M Rabaey, Digital Integrated Circuits A Design Perspective, Prentice Hall
- 4. D.Razavi, Design of Analog CMOS circuits, McGraw Hill

Additional Reading

- 1. Neil H.E. Weste, Kamran Eshraghian, *Principles of CMOS VLSI Design: A system perspective*, Addison Wesley publication.
- 2. Fabricius, Eugene D, Introduction to VISI Design. TMH

3. P.R. Gray & R.G. Meyer, Analysis and design of analog integrated circuits, John Wiley

Proposed Practical list

Suggested list of experiments using CAD tools such as Magic, Microwind, Tanner tools, Xilinx ISE etc.

- 1. Simulation of resistance and capacitance estimation
- 2. Simulation of CMOS amplifiers
- 3. Layout and Simulation of memory structures
- 4. Layout and Simulation of flip-flop structures
- 5. Simulation of fast adder circuits

Term work:

The term work should contain at least 6 CAD programs and assignments covering the whole syllabus, duly recorded and graded.

The distribution of marks for term work shall be as follows,

Laboratory work (Experiments and Journal)	: 15 marks.
---	-------------

Test (at least one)

: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be from the same module or mixed in nature.
- (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
 - 6. No question should be asked from pre-requisite module

University of Mumbai			
CLASS: B.E. (Electronics Engineering) Semester – VIII			
SUBJECT: Robot	ics and Automation	L	
Periods per	Lecture	4	
week (Each of	Practical	2	
60 min.)	Tutorial	-	
		Hours	Marks
Evaluation	Theory Examination	3	100
System	Practical examination	-	-
	Oral Examination	-	25
	Term Work	-	25

	Total	150

Module	Contents	Hours
Objective	This course familiarizes students with the concepts and techniques in robot manipulator control and in hardware components for automation like Programmable Logic Controllers and also confident enough to evaluate, choose and incorporate robots and PLC in engineering systems.	-
Pre-requisite	 Matrix Algebra Fundamentals of Image Processing Fundamentals of Controllers 	-
1	Introduction to Robotics Automation and Robots, Classification, Application, Specification, Notations.	05 hrs
2	Direct Kinematics Dot and cross products, Co-ordinate frames, Rotations, Homogeneous Co- ordinates, Link co-ordinates, Arm equation ((Three axis, Four axis, and Five axis robots)	12 hrs
3	Inverse Kinematics & Workspace Analysis General properties of solutions, Tool configuration, Inverse Kinematics of Three axis, Four axis and Five axis robots Workspace analysis of Four axis and Five axis robots, Work envelope, Workspace fixtures.	09 hrs
4	 Trajectory Planning and Task Planning Trajectory planning, Pick and place operations, Continuous path motion, Interpolated motion, Straight-line motion. Task level programming, Uncertainty, Configuration space, Gross motion planning, Grasp planning, Fine-motion Planning, Simulation of Planar motion, Source and goal scenes, Task planner simulation. 	08 hrs

5	Robot Vision Image representation, Template matching, Polyhedral objects, Shape analysis, Segmentation, Iterative processing, Perspective transformation, Structured Illumination.	06 hrs
6	Programmable Logic Controller Discrete-State Process Control, Relay Controllers background, hardwired control system definition, Ladder Diagram Elements and examples, Relay Sequencers, advantages of Programmable Logic Controller (PLC),Evolutions of PLCs, Block diagram of PLC system – symbols used – relays and PLC Software Functions, logic functions – OR, AND, Comparator, Counters review, PLC Design, PLC Operation, Programming of PLCs – different methods – ladder STL and CSF, ladder programming of simple system like traffic light controller, conveyers, list of various PLCs available.	08 hrs

- 1. Robert Shilling, Fundamentals of Robotics-Analysis and control, Prentice Hall of India
- 2. Fu, Gonzales and Lee, Robotics, McGraw Hill
- 3. J.J, Craig, Introduction to Robotics, Pearson Education
- 4. Curtis D. Johnson, Process Control Instrumentation Technology, PHI Publication, Eighth Edition

Reference Books:

- 1. Staughard, Robotics and AI, Prentice Hall of India
- 2. Grover, Wiess, Nagel, Oderey, "Industrial Robotics", McGraw Hill
- 3. Walfram Stdder, Robotics and Mechatronics,
- 4. Niku, Introduction to Robotics, Pearson Education
- 5. Klafter, Chmielewski, Negin, Robot Engineering, Prentice Hall of India
- 6. Mittal, Nagrath, Robotics and Control, Tata McGraw Hill publications
- 7. George L Balten Jr., Programmable Controllers, Tata McGraw Hill publications

List of Practicals

These experiments can be performed using

1) Use of Contol-X simulation Control of X-Y Position Table manually and thru Programming.

2) Use of Contol-X simulation Control of Conveyor manually and thru Programming. Programming using sensors and conveyor.

3) Use of Contol-X simulation Program for bottling plant experiment using Conveyer and Pneumatics

4) Use of PLC simulation build a basic circuit using a NORMALLY OPEN INPUT and a NORMAL OUTPUT.

5) Use of P-Simulator design a pneumatic circuit using a double acting cylinder and 5/2 Air Spring Valve to open the main gate of a factory which can be controlled by a security personnel from the security room.

6) Use of H-Simulator design a Hydraulic circuit by using a single acting cylinder to open or close the flush guard door of CNC lathe. The operator can open or close the door at the time of loading or unloading the component.

Term work:

Term work shall consist of minimum six experiments and a written test.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal) : 15 marks.

Test (at least one)

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Theory Examination:

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be from the same module or mixed in nature.
- (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 6.No question should be asked from pre-requisite module

: 10 marks.

	University of Mumbai		
CLASS: B.E. (Electronics Engineering)		Semester – VIII	
SUBJECT: Embed	ded Systems and Real	-Time Pro	gramming
Periods per week	Lecture	4	
(Each of 60 min.)	Practical	2	
	Tutorial	-	
		Hours	Marks
Evaluation System	Theory Examination	3	100
	Practical examination	-	-
	Oral Examination	-	25
	Term Work	-	25
	Total		150

	Detailed Syllabus	Hours
1.	Introduction to Embedded systems, Design Metrics, Examples of embedded systems, hardware/software co- design, Embedded micro controller cores (ARM, RISC, CISC, and SOC), embedded memories, sensors and interfacing techniques, Architecture of Embedded Systems.	04
2.	Introduction to MSP 430 RISC Controllers, parallel I/O, external interrupts. Introduction to ARM 7 instruction set, addressing modes, operating modes with ARM core, ARM7 TDMI modes, ADC, Timers, Interrupt structure. Byte ordering (LE, BE), Thumb mode normal mode instructions changes, Pipeline utilization with all register allocations, Floating to fixed point conversion fundamentals. System design with ARM as key processor. DSP features of ARM Core Digital Signal Controllers -DSC differences with conventional micro controllers	12
3	 Serial communications: SCI, SPI, Timing generation and measurements. Analog interfacing and data acquisition. Hardware Interrupts: Various C ISR Declaration syntaxes Interrupt Vectors, Priorities and Nesting Tick Timer Interrupt as heart-beat of embedded system 7-Seg LED, Segment-LCD, Alphanumeric LCD, Graphic LCD displays Communications and Networks RS485 (2 and3 wire)and Modbus Protocol (Intro only) Ethernet and TCPIP Stack (Features and Usage only) CAN features and protocol 	08

4	Software Programming in Assembly Language (ALP) and in High Level Language 'C', 'C' Program Elements: Header and Source Files and Preprocessor Directives, Program Elements: Macros and Functions, Program Elements: Data Types, Data Structures, Modifiers, Statements, Loops and Pointers, Queues, Stacks, Lists and Ordered Lists, Embedded Programming in C++, 'C' Program Compiler and Cross-Compiler, Source Code Engineering Tools for Embedded C/C++, Optimization of Memory Needs.	08
5.	Real-time concepts, real-time operating systems, Required RTOS services/capabilities (in contrast with traditional OS). Real-world issues: blocking, unpredictability, interrupts, caching, Benefits of using RTOS - Concepts of Tasks/Threads/Process - Multitasking - Task Scheduling - Task management - Inter-task communication and Synchronization: - Device Drivers - How to choose an RTOS	10
6	Fundamentals of Design and Development, Program Modelling tools Testing and Debugging methodologies Applications of Embedded Systems: case studies - Consumer and Home - Industrial and Automation - Medical - Robotics - Access Control Systems (Smart Cards, RFIDs, FingerScan)	06

- 1. Rajkamal, Embedded Systems Architecture, Programming and Design, Tata McGraw Hill, Second edition, 2009
- 2. Shibu K V , Introduction to Embedded Systems , Tata Mc Graw Hill, 2009
- 3. Sriram Iyer and Pankaj Gupta, Embedded Realtime Systems Programming, Tata McGraw Hill, first edition, 2003

Additional Reading:

- 1. Embedded Microcomputer Systems -Jonathan W. Valvano Thomson
- 2. An Embedded Software Primer David E. Simon Pearson Education
- 3. Embedded real time system, Dr. K.V.K.Prasad, Dreamtech Press.

Suggested Laboratory Experiments

Minimum Six experiments covering topics in the Syllabus

- Interfacing keyboard, LED, LCD Displays
- Programming should be using Suitable IDE and Embedded C
- Serial Communication

Term work:

Term work shall consist of minimum six experiments, Assignments and a written test.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal)	: 15 marks.
Test (at least one)	: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Theory Examination:

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be from the same module or mixed in nature.
- (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

6.No question should be asked from pre-requisite module

University of Mumbai			
CLASS: B.E. (Electron	ics Engineering)	Semester -	- VIII (Elective)
SUBJECT: Advanced	Networking Technologies (ELECTIVE)	
Periods per week	Lecture	4	
(Each of 60 min.)	Practical	2	
	Tutorial	-	
		Hours	Marks
Evaluation System	Theory Examination	3	100
	Practical examination	-	-
	Oral Examination	-	25
	Term Work	-	25
	Total		150

Objectives:

Objective of this course is to make students familiar with data communication technologies and how to use them to: Design, Implement, Operate, Manage enterprise networks.

Module	Contents	Hours
1	Networking Fundamentals: Overview of Internetworking architecture models: The OSI model, TCP/IP protocol Suite, Addressing, IP versions subneting and supernating. Internetworking Protocols and standards, Standards Organizations, Internet Standards, Connectors, Transceivers and Media converters, Network interface cards and PC cards, Repeaters, Hubs, Bridges, Switches, Routers and Gateways etc. Hardware selection.	08
2	Optical Networking: SONET/SDH Standards, devices, DWDM, frame format, DWDM, Performance and design considerations.	06
3	 LAN Technologies: Wireless LANs technology and IEEE 802.11 Standard. WAN Technologies : Frame FR concept, FR specifications, FR design and VoFR and Performance and design considerations ATM The WAN Protocol: Faces of ATM, ATM Protocol operations. (ATM cell and Transmission) ATM Networking basics, Theory of Operations, B- ISDN reference model, PHY layer, ATM Layer (Protocol model), ATM layer and cell, Traffic Descriptor and parameters, Traffic Congestion control defined, AAL Protocol model, Traffic contract and QoS, User Plane overview, Control Plane AAL, Management Plane, Sub S3 ATM,ATM public services. "" 	10
4	Network Design: Network layer design, access layer design, access network capacity, network topology and Hardware and completing the access network design.	08
5	Network Security: Security threats, safeguards and design for network security Enterprise Network Security: DMZ, NAT, SNAT, DNAT, Port Forwarding, Proxy, Transparent Proxy, Packet Filtering and Layer 7 Filtering.	08
6	Network Management and Control	08

Documentation, OAM & P, RMON, Designing a network management solution. Monitoring and control of network activity and network project management.	

Text Books:

- 1. Data Network Design by Darren Spohn, 3e McGraw Hill publications
- 2. Data Communication and Network Security by Carr and Snyder, McGraw Hill Publications.
- 3. Communication Networks by Leon-Garcia and Indra Widjaja, 2e, Tata McGraw-Hill Publications.
- 4. Information Security by Mark Stamp and Deven Shah by Wiley Publications.
- 5. Behrouz A Forouzan, Data communications and Networking 4th Edition, McGraw-Hill Publication.
- 6. William Stallings, Data Computer Communications, Pearson Education **Reference Books:**
- 1. Eldad Perahita ,Next Generation wireless LANS, Cambridge Publication
- 2. Computer Networking by J. F. Kurose and K. W. Ross, Pearson Education
- 3. Local Area Networks by Gerd Keiser, McGraw-Hill Publication.

Proposed Practical list:

- 1. Network Monitoring and Traffic Analysis: NMAP and NTOP
- 2. Remote Login Service: SSH
- 3. Network Traffic Modeling using Etherape
- 4. Firewall Design using IPTables

Term work:

Term work shall consist of minimum six experiments, tutorials and a written test.

The distribution of marks for term work shall be as follows,

Laboratory work (Experiments and Journal)

Test (at least one) : 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

: 15 marks.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Theory Examination:

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be from the same module or mixed in nature.
- (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any

module other than module 3.)

- In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus. No question should be asked from pre-requisite module 5.
- 6.

	University of Mumbai				
CLASS: B.E. (Electronics Engineering) Semester – VIII (El				– VIII (Elective)
SUBJECT:	SUBJECT: DSP PROCESSORS AND ARCHITECTURES				
Periods pe	r week	Lecture	4		
		Practical	2		
(each of 60	min.)	Tutorial	-		
			Hours	Marks	
Evaluation	System	Theory Examination	3	100	
		Practical examination			
		Oral Examination	-	25	
		Term Work	-	25	
		Total		150	
Objective Pre-	ctiveThe DSP algorithms are better implemented on DSP processors having specially tailored architectures. It is therefore essential for a DSP systems designer to understand these processors and apply them in system design.Fundamentals of Discrete time signal processing				
	rundame	entais of Discrete time signal pr	ocessing		
requisite Module	Contents Hours				
1		S IENTALS OF PROGRAMMAE		6	
	Multiplier and Multiplier accumulator, Modified Bus Structures and Memory access in P-DSPs, Multiple access memory , Multi-ported memory , VLIW architecture, Pipelining , Special Addressing modes in P- DSPs , On chip Peripherals, Computational accuracy in DSP processor				
2	ADSP PROCESSORS 6 Architecture of ADSP-21XX and ADSP-210XX series of 6 DSP processors 6				
3	TMS320C5X PROCESSOR8Architecture, Assembly language syntax, Addressing modes Assembly language Instructions - Pipeline structure, Operation Block Diagram of DSP starter kit Application Programs for processing real time signals.8				
4	PROGRAMMABLE DIGITAL SIGNAL PROCESSORS:12Data Addressing modes of TMS320C54XX DSPs,DataAddressing modes of TMS320C54XX Processors,Memory space of TMS320C54XX Processors, Program				

	Control,, On-Chip peripherals, Interrupts ofTMS320C54XX processors, Pipeline Operation of TMS320C54XX Processors	
5	ADVANCED PROCESSORS Code Composer studio -Architecture of TMS320C6X - architecture of Motorola DSP563XX – Comparison of the features of DSP family processors.	8
6	IMPLEMENTATION OF BASIC DSP ALGORITHMS: An FFT Algorithm for DFT Computation, ,Computation of signal spectrum, FIR Filters, IIR Filters, interpolation Filters, Decimation filters, Adaptive Filters	8

Text- Books:

- B. Venkata Ramani and M. Bhaskar, Digital Signal Processors, Architecture, Programming and TMH, 2004.
- Avtar Singh, S.Srinivasan DSP Implementation using DSP microprocessor with Examples from TMS32C54XX -Thamson 2004
- E.C.Ifeachor and B.W Jervis, Digital Signal Processing A Practical approach, Pearson Publication
- Digital signal processing, Salivahanan. Ganapriya, TMH ,second Edition **Reference Reading:**
- DSP Processor Fundamentals, Architectures & Features Lapsley et al. S. Chand & Co, 2000.
- Digital signal processing-Jonathen Stein John Wiley 2005
- S.K. Mitra, Digital Signal Processing, Tata McGraw-Hill Publication, 2001

.Suggested list of Experiments /simulations

- 1. Numbers representation. Fixed Point Representation (Qx, IQ Format).
- Effect of sampling rate on waveform generation using DSP processor(Using CCS)
- 3. DFT computation using DSP processor
- 4. FIR filter design using MATLAB and find finite word length effect
- 5. .FIR filter design using DSP processor
- 6. IIR filter design using MATLAB and find finite word length effect
- 7. IIR filter design using DSP processor
- 8. Analysis of speech signal
- Application Development using CCS. Examples Signals Acquisition, DTMF tone detection techniques and the Goertzel algorithm, A GMSK Modulator Implementation

Term Work: The term work shall consist of at least six assignments and experiments on DSP processors /simulations covering the whole of syllabus, duly recorded and graded.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal) : 15 marks.

Test (at least one)

: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus

Theory Examination:

- 1. Question paper will be comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be mixed in nature. (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 6. No question should be asked from pre-requisite module.

University of Mumbai

		: NEURAL NETWORKS & FU		-MS	
Periods pe	r week	Lecture			
			2		
(each of 60	each of 60 min.) Tutorial -				
			Hours	Marks	
Evaluation	System	Theory Examination	3	100	
		Practical examination			
		Oral Examination	-	25	
		Term Work	-	25	
	1	Total		150	
Pre- requisite				e on the nd ways to apply cs with the .	
		C, C++ ,Java.			
Module	Contents Introduc			Hours	
	neuron, 7 architectu process:	al neurons, McCulloch and Pitts models of Types of activation function, Network 08 ures, Knowledge representation Learning Error-correction learning, Supervised Unsupervised learning, Learning Rules			
2	theorem, square a	ayer Perception:Perception convergenceMethod steepest descent - least mean08Igorithms08er Perception:Derivation of the back-06			
0	-				
4	Radial B network patterns, algorithm Hopfield	Agation algorithm, Learning Factors.al Basis and Recurrent Neural Networks: RBFork structure theorem and the reparability of rns, RBF learning strategies, K-means and LMS08othms, comparison of RBF and MLP networks, eld networks: energy function, spurious states, performance08			
5	model, A	Iynamics : Attractors, NeurodynamicalAdaptive Resonance theory , Towards the anizing Feature Map. Brain-state-in- a-box08		08	
6	fuzzy set relations, Members	gic: Fuzzy sets, Properties, Op s, Fuzzy relation Operations or The extension principle, Fuzzy ship functions, Fuzzification and cation methods, Fuzzy controlle	n fuzzy / mean d	on 10	

Text- Books:

- Simon Haykin, "Neural Network a Comprehensive Foundation", Pearson Education
- Dr.S.N.Sivanandam,Mrs S.N. Deepa Introduction to Soft computing tool Wiley Publication
- Satish Kumar Neural Networks: A classroom Approach Tata McGraw-Hill
- Zurada J.M., "Introduction to Artificial Neural Systems, Jaico publishers
- Thimothv J. Ross, "Fuzz V Logic with Engineering Applications", McGraw
- Ahmad Ibrahim, "Introduction to Applied Fuzzy Electronics', PHI
- Rajsekaran S, Vijaylakshmi Pai, Neural Networks, Fuzzy Logic, and Genetic Algorithms, PHI

Reference books

- Hagan, Demuth, Beale, 'Neural Network Design', Thomson Learning
- Christopher M Bishop Neural Networks For Pattern Recognition ,Oxford Publication
- William W Hsieh Machine Learning Methods in the Environmental Sciences Neural Network and Kernels Cambridge Publication
- Dr.S.N.Sivanandam, Dr.S.Sumathi Introduction to Neural Network Using Matlab Tata McGraw-Hill

List of experimental: using C/C++ or Matlab or java

- Single layer perceptron neural network
- Multi layer perceptron neural network
- Back propagation neural network
- Radial basis and recurrent Neural network
- Fuzzification and de fuzzification

Term Work:

The term work shall consist of at least six assignments and experiments using MATLAB Or C/C++ or Java covering the whole of syllabus, duly recorded and graded.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments and Journal) : 15 marks.

Test (at least one)

: 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Theory Examination:

BE, VII-VIII, Electronics, wef 2010-11

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Question number 1 will be compulsory and will cover all modules.
- 4. Remaining questions will be from the same module or mixed in nature.
- (e.g.- suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 5. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 6. No question should be asked from pre-requisite module

University of Mumbai				
CLASS: B.E. (Electronics)		Semester	– VIII (Elective)	
SUBJECT: ELECTRO	L			
Periods per week	Lecture	4		
(Each of 60 min.)	Practical	2 -		
	Tutorial			
		Hours	Marks	
Evaluation System	Theory Examination	3	100	
	Practical examination	-	-	
	Oral Examination	-	25	
	Term Work	-	25	
	Total		150	

Module	Contents	Hours
Objective	To cover product design & development stages and total coverage of product assessment by introducing the basics of reliability and quality of electronic product and then discusses the various modes and causes of failure.	-
1	 Product Design and development Introduction, An overview of product development & product assessment, Pilot production batch, Concept of availability, Screening test, Environmental effects on reliability, Redundancy, Failsafe system, Ergonomic & aesthetic design considerations, Packaging & storage Estimating power supply requirement (Power supply sizing), Power supply protection devices Noise consideration of a typical system, Noise in electronic circuit, Measurement of noise Grounding, Shielding and Guarding 	12hrs

	Enclosure sizing & supply requirements & materials for enclosure and tests carried out on	
	enclosure	
	Thermal management and its types	
2	PCB designing Layout, PCB sizes, Layout – General rules & parameters. Recommendations for decoupling & bypassing. Design rules for digital circuit PCB & analog circuit PCBs	12hrs
	Noise generation, Supply & ground conductors	
	Multilayer boards	
	Component assembly & testing of assembled PCB, Bare board testing. Component assembly techniques	
	Automation & computers in PCB design, Computer aided design , Design automation	
	Soldering techniques, Solderability testing	
	Study of packages for discrete devices & ICs, IC reliability issues. Parasitic elements	
	Calculations of parasitic elements in high speed PCB. High speed PCB design and points to be considered for designing the high speed PCBs	
	Mounting in presence of vibration. SMD assemblies	
	Board layout check list. Tests for multilayer PCB	
	Cable	
3	Hardware design and testing methods Logic analyzer, its architecture & operation and Use of logic analyzer	6hrs
	Spectrum analyzer	
	Network analyzer,	
	Oscilloscope, DSO trigger modes	
	Examples using MSO	
	Signal integrity issues	
	Use & limitations of different types of analysis	
	Monte Carlo analysis	
		I

4	Software design and testing methods	6hrs
	Introduction	
	Phases of software design & Goals of software design	
	Methods of program flow representation	
	Structured program construct	
	Testing & debugging of program	
	Software design	
	Finite state machine	
	Decision to use assembly & / or high level language for software development	
	Assembler	
	Compilers, Compilers design	
	Simulators, CPU Simulators	
	Emulators	
	Droduct tooting	Chro
5	Product testing	6hrs
	Environmental testing for product. Environmental test chambers & rooms. Tests carried out on the enclosures	
	Electromagnetic compatibility (EMC) with respect to compliance. Electromagnetic compatibility (EMC) testing . Conducted emission test (time domain methods). Radiated emission test	
	Basics on standard used. Instrument specifications	
6	Documentation PCB documentation- Specifying laminate grade, drilling details, PCB finish- Tin, solder, gold, silver plating, hot air leveling, and bare board testing. Understanding advantages and limitations of each Product documentation- bill of materials, Production test specification- a case study for real circuit, Interconnection diagram- A case	6hrs

study., Front and rear panel diagrams for selected product	
Manuals- Instruction or operating manual,	
Service and Maintenance manual, Fault finding	
tree	
Software documentation practices- For C programmes, Assembly programmes with	
particular focus on development of programme	
by several engineers simultaneously.	

Recommended Books:

Text

1. Electronic Product Design, R.G.Kaduskar, V.B.Baru, Wiley India

Reference

- 1. Printed Circuit Board design and technology Walter C Bosshart Tata McGraw –Hill-CEDT
- 2. Handbook of Printed Circuit manufacturing Raymond H. Clark (Van Nostrand Reinhold Company, New York)
- Electronic testing and fault diagnosis –G.C. Loveday (Ah wheeler Publication, India)
- 4. Electronics Engineers reference book 5th Edition Edited by F.F. Mazda Butterworths Publication Co., UK)
- 5. Principles of Reliable Soldering Techniques, Sengupta R., New Age International

Term work:

Term work shall consist of minimum four experiments & 3 tutorials and a written test.

The distribution of marks for term work shall be as follows,Laboratory work (Experiments and Journal): 15 marks.Test (at least one): 10 marks.

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment and the entire syllabus.

Theory Examination:

- 1. Question paper will comprise of total 7 questions, each of 20 marks.
- 2. Only 5 questions need to be solved.
- 3. Questions will be analytical and design oriented.
- 4. Question number 1 will be compulsory and cover all modules.

- 5. Remaining questions will be mixed in nature. (e.g. Suppose Q.2 has part (a) from, module 3 then part (b) will be from any module other than module 3.)
- 6. In the question paper, weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

B. E. Electronics Engineering Semester VIII Subject – Project -II		
Project Hour: 8 Hrs/week Dral / Practical/ Presentation / Demonstration examination: 100 marks Total marks= 150 marks		

Note: One faculty will not guide more than 3 projects in a semester. For every group allotted to faculty the load is considered as 2 Hour per group per week, be specified in the time table of faculty.

Rationale: Project allows the student to work independently to put the knowledge of **Electronics engineering** theory into practice.

Detailed description

In continuation to the efforts taken towards building the project in VII semester, during VIII semester, students are expected to complete their project idea and meet the set goals and compile the project report.

FINAL PROJECT REPORT

Your guide will give you specific instructions as to the expected content of your final report. The report should cover the progress that has been made, including results obtained, graphical data, design drawings, and a statement of conclusions and recommendations (if applicable). Details of theory, experimental data, computer programs, purchased materials, sources and suppliers etc., must be included. Your report must be sufficiently complete that a student continuing your project would benefit from your report and would not be required to duplicate any of your work.

PROJECT MARKING SCHEME

A project used to assign marks in three general categories, as explained below. Achievement in each of these areas is critical to a successful project.

Project Goals & Achievements (20%): Guide will evaluate both the difficulty of the goals and whether the goals were achieved. Although projects will differ, it is always extremely important to set goals at the start of a project and work toward these goals. The project goals should be set in collaboration with the guide and an effort should be made to establish a realistic scope for the project. In some cases, it may become apparent as the project progresses that the original goals need to be adjusted and a modified set of goals must be set.

Final Report Quality & Content (40%): This is an evaluation of the quality of the final report based on the report format, the clarity of communication and the analytical content.

Student Organization, Creativity & Effort (40%): This portion of the evaluation reflects the student's performance, with emphasis on effort, organization,

creativity and initiative.

Project Report Outline

The hard-bound report will contain following details:

- Title
- Certificate
- Acknowledgement (if any)
- Table of Contents
- List of Figures
- Abstract
- Introduction
- Literature Survey
- Mathematical Modeling/ Analysis and Design
- Implementation
- Result and Discussion
- Conclusion and Future Scope
- Reference
- Appendix (optional)

Term work

Term work shall consist of the above mentioned activities which shall be evaluated and shall carry a weightage of 50 marks

Oral Examination

The oral examination shall be conducted on the basis on presentation/ practical / demonstration given by the students and shall carry a weightage of 100 marks

B.E. Ele	ctronics Engineering
VII-Seventh Semester (R2001) -Old	Equivalent VII-Seventh Semester (R2007)- Revised
1. Basics of VLSI	VLSI Design
2. Instrumentation Systems	Electronic Instrumentation Systems (TE, VI sem R-2007)
3. Digital Communication	Digital Communication and Coding Techniques (TE, V sem R-2007)
4. Filter Theory and Applications	Filter Design
5. Elective – I	
Wireless Communication	Wireless communication
Image Processing	Digital Image Processing Design
Microprocessor System Design	Micro computer system design
DSP Architecture	DSP Processors and architectures (VIII – R2007)
Process Control Instrumentation	No Equivalent*

* Student needs to appear in the same subject of R-2001

B.E. Elect	ronics Engineering
VIII-Eighth Semester (R2001) - Old	Equivalent VIII-Eighth Semester (R2007)- Revised
1. Power Electronics	Power Electronics and Drives(VII – R2007)
2. Data Communication & Networking	Communication Networks
3. Mechatronics	No Equivalent*
4. Elective – II	
VLSI Design	Advance VLSI Design
Robotics	Robotics and Automation
Telecom Network Management	No Equivalent*
Embedded System	Embedded Systems and Real-Time Programming
Advance DSP	No Equivalent*
Bio-medical Instrumentation	Advances in Biomedical Instrumentation

* Student needs to appear in the same subject of R-2001